
Reliable Web Services Composition:
An MDD Approach

Genoveva Vargas-Solar, Valeria de Castro, Plácido Antonio de Souza Neto, Javier A. Espinosa-Oviedo,
Esperanza Marcos, Martin A. Musicante, José-Luis Zechinelli-Martini, and Christine Collet

Abstract—This paper presents an approach for modeling
and associating Policies to services’ based applications. It
proposes to extend the SOD-M model driven method with
(i) the π-SCM, a Policy services’ composition meta-model for
representing non-functional constraints associated to services’
based applications; (ii) the π-PEWS meta-model providing
guidelines for expressing the composition and the policies;
and, (iii) model to model and model to text transformation
rules for semi-automatizing the implementation of reliable
services’ compositions. As will be shown within our environment
implementing these meta models and rules, one may represent
both systems’ cross-cutting aspects (e.g., exception handling for
describing what to do when a service is not available, recovery,
persistence aspects) and constraints associated to services, that
must be respected for using them (e.g., the fact that a service
requires an authentication protocol for executing a method).

Index Terms—Methodology, πSOD-M, sevice composition,
policy.

I. INTRODUCTION

PERVICE oriented computing is at the origin of an
evolution in the field of software development. An

important challenge of service oriented development is to
ensure the alignment between IT systems and the business
logic. Thus, organizations are seeking for mechanisms to
deal with the gap between the systems developed and
business needs [1]. The literature stresses the need for

Manuscript received on April 24, 2014; accepted for publication on June
12, 2014.

Genoveva Vargas-Solar is with French Council of Scientific Research, LIG-
LAFMIA, 681 rue de la Passerelle BP 72, 38402 Saint Martin d’Hères, France
(e-mail: Genoveva.Vargas@imag.fr).

Valeria de Castro is with Universidad Rey Juan Carlos, Av Tulipán,
Móstoles, Spain (e-mail: Valeria.deCastro@urjc.es).

Plácido Antonio de Souza Neto is with Instituto Federal do Rio Grande do
Norte, Av. Senador Salgador Filho, 1559 – Tirol, Natal – RN, Brazil (e-mail:
placido.neto@ifrn.edu.br).

Javier A. Espinosa-Oviedo is with French Mexican Laboratory of
Informatics and Automatic Control, 681 rue de la Passerelle BP 72, 38402
Saint Martin d’Hères, France (e-mail: javiera.espinosa@gmail.com).

Esperanza Marcos is with Universidad Rey Juan Carlos, Av Tulipán,
Móstoles, Spain (e-mail: esperanza.marcos@urjc.es).

Martin A. Musicante is with DIMAp - UFRN, ForAll - Formal Methods
and Language Research Laboratory Campus Universitrio – Lagoa Nova, Natal
– RN, Brazil (e-mail: mam@dimap.ufrn.br).

José-Luis Zechinelli-Martini is with French-Mexican Laboratory on
Informatics and Automatic Control, 681 rue de la Passerelle BP 72, 38402
Saint Martin d’Héres, France (e-mail: joseluis.zechinelli@gmail.com).

Christine Collet is with Grenoble Institute of Technology, Laboratory of
Informatics of Grenoble, 681 rue de la Passerelle BP 72, 38402 Saint Martin
d’Hères, France (e-mail: Christine.Collet@imag.fr).

methodologies and techniques for service oriented analysis
and design, claiming that they are the cornerstone in the
development of meaningful services’ based applications [2].
In this context, some authors argue that the convergence of
model-driven software development, service orientation and
better techniques for documenting and improving business
processes are the key to make real the idea of rapid, accurate
development of software that serves, rather than dictates,
software users’ goals [3].

Service oriented development methodologies providing
models, best practices, and reference architectures to
build services’ based applications mainly address functional
aspects [4], [5], [6], [7], [8]. Non-functional aspects
concerning services’ and application’s “semantics”, often
expressed as requirements and constraints in general purpose
methodologies, are not fully considered or they are added
once the application has been implemented in order to ensure
some level of reliability (e.g., data privacy, exception handling,
atomicity, data persistence). This leads to services’ based
applications that are partially specified and that are thereby
partially compliant with application requirements.

The objective of this work is to model non-functional
constraints and associate them to services’ based applications
early during the services’ composition modeling phase.
Therefore this paper presents πSOD-M, a model-driven
method that extends the SOD-M [6] for building reliable
services’ based information systems (SIS).

This work (i) proposes to extend the SOD-M [6] method
with the notion of A-Policy [9] for representing non-functional
constraints associated to services’ based applications; (ii)
defines the π-PEWS meta-model providing guidelines for
expressing the composition and the A-policies; and finally, (iii)
defines model to model transformation rules for generating
the π-PEWS model of a reliable services’ composition starting
from the extended services’ composition model; and, model
to text transformations for generating the corresponding
implementation. As will be shown within our environment
implementing these meta models and rules, one may represent
both systems’ cross-cutting aspects (e.g., exception handling
for describing what to do when a service is not available,
recovery, persistence aspects) and constraints associated to
services, that must be respected for using them (e.g., the fact
that a service requires an authentication protocol for executing
a method).

17 Polibits (49) 2014ISSN 1870-9044; pp. 17–27

Get	 	
Song	

Update	
Twi0er	

Update	
Facebook	

Fig. 1. BPMN model of the “To Publish Music” scenario

The remainder of the paper is organized as follows.
Section II gives an overview of our approach. It describes
a motivation example that integrates and synchronizes
well-known social networks services namely Facebook,
Twitter and, Spotify. Sections III, IV, and V describe
respectively the three key elements of our proposal, namely
the π-SCM and π-PEWS meta-models and the transformation
rules that support the semi-automatic generation of reliable
services’ compositions. Section VI describes implementation
and validation issues. Section VII analyses related work
concerning policy/contract based programming and, services’
composition platforms. Section VIII concludes the paper and
discusses future work.

II. MODELING RELIABLE SERVICES’ COMPOSITIONS
WITH πSOD-M

Consider for instance the following scenario. An organi-
zation wants to provide the services’ based application “To
Publish Music” that monitors the music a person is listening
during some periods of time and sends the song title to this
person’s Twitter and Facebook accounts. Thus, this social
network user will have her status synchronized in Twitter
and Facebook (i.e., either the same title is published in both
accounts or it is not updated) with the title of the music she
is listening in Spotify. For developing this services’ based
application it is necessary to compose the following services
calling their exported methods:

– The music service Spotify exports a method for obtaining
information about the music a given user is listening:

– get-Last-Song (userid): String ;
– Facebook and Twitter services export a method for

updating the status of a given user:
– update-Status (userid, new-status): String;

Figure 1 shows the BPMN model1 of the scenario. The “To
Publish Music” scenario starts by contacting the music service
Spotify for retrieving the user’s musical status (activity Get
Song). Twitter and Facebook services are then contacted in
parallel for updating the user’s status with the corresponding
song title (activities Update Twitter and Update Facebook).

Given a set of services with their exported methods
known in advance or provided by a service directory,

1Details on BPMN (Business Process Management Notation) can be found
in http://www.bpmn.org/

building services’ based applications can be a simple task
that implies expressing an application logic as a services’
composition. The challenge being ensuring the compliance
between the specification and the resulting application.
Software engineering methods (e.g., [4], [5], [6], [7]) today can
help to ensure this compliance, particularly when information
systems include several sometimes complex business processes
calling Web services or legacy applications exported as
services.

A. Modeling a Services’ Based Application
Figure 2 shows SOD-M that defines a service oriented

approach providing a set of guidelines to build services’
based information systems (SIS) [6], [10]. Therefore, SOD-M
proposes to use services as first-class objects for the whole
process of the SIS development and it follows a Model
Driven Architecture (MDA) [11] approach. Extending from
the highest level of abstraction of the MDA, SOD-M
provides a conceptual structure to: first, capture the system
requirements and specification in high-level abstraction models
(computation independent models, CIM’s); next, starting from
such models build platform independent models (PIM’s)
specifying the system details; next transform such models into
platform specific models (PSM’s) that bundles the specification
of the system with the details of the targeted platform;
and finally, serialize such model into the working-code that
implements the system.

As shown in Figure 2, the SOD-M model-driven process
begins by building the high-level computational independent
models and enables specific models for a service platform to
be obtained as a result [6]. Referring to the “To Publish Music”
application, using SOD-M the designer starts defining an
E3value model2 at the CIM level and then the corresponding
models of the PIM are generated leading to a services’
composition model (SCM).

Now, consider that besides the services’ composition
that represents the order in which the services are called
for implementing the application “To Publish Music” it is
necessary to model other requirements that represent the
(i) conditions imposed by services for being contacted,
for example the fact the Facebook and Twitter require
authentication protocol in order to call their methods for
updating the wall; (ii) the conditions stemming from the
business rules of the application logic, for example the fact
that the walls in Facebook and Twitter must show the same
song title and if this is not possible then none of them is
updated.

B. Modeling Non-functional Constraints of Services’ Based
Applications

Adding non-functional requirements and services con-
straints in the services’ composition is a complex task that

2The E3 value model is a business model that represents a business case
and allows to understand the environment in which the services’ composition
will be placed [12].

18Polibits (49) 2014 ISSN 1870-9044

Genoveva Vargas-Solar, Valeria de Castro, Plácido Antonio de Souza Neto, Javier A. Espinosa-Oviedo, Esperanza Marcos, et al.

BEHAVIOUR	 HYPERTEXT	 CONTENT	

Domain	
Modeling	

Computation	
Independent	
Model	 (CIM)	

Platform	
Independent	
Model	 (PIM)	

Platform	
Specific	

Model	 (PSM)	

Use	 Case	 Model	

Extended	 Use	 Case	 	
Model	

SOD-‐M	

Service	 Process	 	
Model	

Business	
Modeling	 Value	 Model	

Code	

π-‐Service	 	
Composition	 Model	

Service	 Composition	 	
Model	

extends	

π-‐PEWS	 Model	

PEWS	
Code	

π-‐SOD-‐M	

Fig. 2. SOD-M development process

implies programming protocols for instance authentication
protocols to call Facebook and Twitter in our example, and
atomicity (exception handling and recovery) for ensuring a
true synchronization of the song title disseminated in the walls
of the user’s Facebook and Twitter accounts.

Service oriented computing promotes ease of information
systems’ construction thanks, for instance, to services’ reuse.
Yet, this is not applied to non-functional constraints as the
ones described previously, because they do not follow in
general the same service oriented principle and because they
are often not fully considered in the specification process of
existing services’ oriented development methods. Rather, they
are either supposed to be ensured by the underlying execution
platform, or they are programmed through ad-hoc protocols.
Besides, they are partially or rarely methodologically derived
from the application specification, and they are added once
the code has been implemented. In consequence, the resulting
application does not fully preserve the compliance and reuse
expectations provided by the service oriented computing
methods.

This work extends SOD-M for building applications
by modeling the application logic and its associated
non-functional constraints and thereby ensuring the generation
of reliable services’ composition. As a first step in our
approach, and for the sake of simplicity we started modeling
non-functional constraints at the PSM level. Thus, in this paper
we propose the π-SCM, the services’ composition meta-model
extended with A-policies for modeling non-functional
constraints (highlighted in Figure 2 and described in
Section III). πSOD-M defines the π-PEWS meta-model
providing guidelines for expressing the services’ composition
and the A-policies (see Section IV), and also defines model
to model transformation rules for generating π-PEWS models

starting from π-SCM models that will support executable code
generation (see Section V). Finally, our work defines model
to text transformation rules for generating the program that
implements both the services’ composition and the associated
A-policies and that is executed by an adapted engine (see
Section VI).

III. π-SERVICES’ COMPOSITION META-MODEL

The A-policy based services’ composition meta-model (see
in Figure 4) represents a workflow needed to implement
a services’ composition, identifying those entities that
collaborate in the business processes (called BUSINESS
COLLABORATORS3) and the ACTIONS that they perform.
This model is represented by means of a UML activity
diagram. Thus, as shown in Figure 3, the meta-model includes
typical modeling elements of the activity diagram such
as ACTIVITYNODES, INITIALNODES and FINALNODES,
DECISIONNODES, etc., along with new elements defined by
SOD-M such as BUSINESS COLLABORATORS, SERVICEAC-
TIVITY and ACTION (see the white elements in Figure 4).

– A BUSINESS COLLABORATOR element represents those
entities that collaborate in the business processes by
performing some of the required actions. They are
graphically presented as a partition in the activity
diagram. A collaborator can be either internal or external
to the system being modelled. When the collaborator
of the business is external to the system, the attribute
IsExternal4 of the collaborator is set to true.

– ACTION, a kind of EXECUTABLENODE, are represented
in the model as an activity. Each action identified in

3We use CAPITALS for referring to meta-models’ classes.
4We use the sans serif font for referring to models’ classes defined using

a meta-model.

19 Polibits (49) 2014ISSN 1870-9044

Reliable Web Services Composition: An MDD Approach

the model describes a fundamental behaviour unit which
represents some type of transformation or processing
in the system being modelled. There are two types of
actions: i) a WebService (attribute Type is WS); and ii) a
simple operation that is not supported by a Web Service,
called an ACTIVITYOPERATION (attribute Type is AOP).

– The SERVICEACTIVITY element is a composed activity
that must be carried out as part of a business service and
is composed of one or more executable nodes.

To illustrate the use of the π-SCM meta-model we used
it for defining the A-policy based composition model of
the “To Publish Music” scenario (see Figure 4). There are
three external business collaborators (Spotify, Twitter and
Facebook5). It also shows the business process of the “To
Publish Music” application that consists of three service
activities: Listen Music, Public Music and Confirmation. Note
that the action Publish Music of the application calls the
actions of two service collaborators namely Facebook and
Twitter.

Instead of programming different protocols within the
application logic, we propose to include the modeling
of non-functional constraints like transactional behaviour,
security and adaptability at the early stages of the services’
composition engineering process. We model non-functional
constraints of services’ compositions using the notion of
A-policy [9], [13], a kind of pattern for specifying A-policy
types. In order to represent constraints associated to services
compositions, we extended the SOD-M services’ composition
model with two concepts: RULE and A-POLICY (see blue
elements in the π-SCM meta-model in Figure 3).

The RULE element represents an event - condition -
action rule where the EVENT part represents the moment in
which a constraint can be evaluated according to a condition
represented by the CONDITION part and the action to be
executed for reinforcing it represented by the ACTION part. An
A-policy groups a set of rules. It describes global variables and
operations that can be shared by the rules and that can be used
for expressing their Event and Condition parts. An A-Policy
is associated to the elements BUSINESSCOLLABORATOR,
SERVICEACTIVITY and, ACTION of the π-SCM meta-model
(see Figure 3).

Given that Facebook and Twitter services require authen-
tication protocols in order to execute methods that will read
and update the users’ space. A call to such services must be
part of the authentication protocol required by these services.
In the example we associate two authentication policies, one
for the open authentication protocol, represented by the class
Twitter OAuthPolicy that will be associated to the activity
UpdateTwitter (see Figure 4). In the same way, the class
Facebook HTTPAuthPolicy, for the http authentication protocol
will be associated to the activity UpdateFacebook. OAuth
implements the open authentication protocol. As shown in

5We use italics to refer to concrete values of the classes of a model that
are derived from the classes of a meta-model.

Figure 4, the A-policy has a variable Token that will be used
to store the authentication token provided by the service. This
variable type is imported through the library OAuth.Token. The
A-policy defines two rules, both can be triggered by events of
type ActivityPrepared: (i) if no token has been associated to
the variable token, stated in by the condition of rule R1, then
a token is obtained (action part of R1); (ii) if the token has
expired, stated in the condition of rule R2, then it is renewed
(action part of R2). Note that the code in the actions profits
from the imported OAuth.Token for transparently obtaining or
renewing a token from a third party.

HTTP-Auth implements the HTTP-Auth protocol. As shown
in Figure 4, the A-policy imports an http protocol library and it
has two variables username and password. The event of type
ActivityPrepared is the triggering event of the rule R1. On the
notification of an event of that type, a credential is obtained
using the username and password values. The object storing
the credential is associated to the scope, i.e., the activity that
will then use it for executing the method call.

Thanks to rules and policies it is possible to model and
associate non-functional properties to services’ compositions
and then generate the code. For example, the atomic
integration of information retrieved from different social
network services, automatic generation of an integrated view
of the operations executed in different social networks or for
providing security in the communication channel when the
payment service is called.

Back to the definition process of a SIS, once the A-policy
based services’ composition model has been defined, then it
can be transformed into a model (i.e., π-PEWS model) that
can support then executable code generation. The following
section describes the π-PEWS meta-model that supports this
representation.

IV. π-PEWS META-MODEL

The idea of the π-PEWS meta-model is based on the
services’ composition approach provided by the language
PEWS [14], [15] (Path Expressions for Web Services), a
programming language that lets the service designer combine
the methods or subprograms that implement each operation
of a service, in order to achieve the desired application
logic. Figure 5 presents the π-PEWS meta-model consisting
of classes representing:

– A services’ composition: NAMESPACE representing
the interface exported by a service, OPERATION that
represents a call to a service method, COMPOS-
ITEOPERATION, and OPERATOR for representing a
services’ composition and PATH representing a services’
composition. A PATH can be an OPERATION or a
COMPOUND OPERATION denoted by an identifier. A
COMPOUND OPERATION is defined using an OPERATOR
that can be represent sequential (.) and parallel (‖)
composition of services, choice (+) among services,
the sequential (∗) and parallel ({. . .}) repetition of an

20Polibits (49) 2014 ISSN 1870-9044

Genoveva Vargas-Solar, Valeria de Castro, Plácido Antonio de Souza Neto, Javier A. Espinosa-Oviedo, Esperanza Marcos, et al.

	

11..*

ServiceActivity

-IsDimension : Boolean
-IsExternal : Boolean

ActivityPartition0..1

*

*

*

*

*

ActivityNode

Activity
(form BasicBehaviors)

1

*

+Node
{subsets ownedElement}

Activity

RedefinableElement
(from Kernel)

+activity
{subsets owner}

+redefinedElement
{redefinesredefinedElement}

*

ActivityEdge

*+redefinedElement
{redefinesredefinedElement}

ControlFlow ObjectFlow

*

1

1

*
+outgoing

+incoming

+target

+source

ControlNode

InitialNode FinalNode ForkNode

ActivityFinalNode

JoinNode

ObjectNodeExecutableNode

Business
Collaborator

- Name: String;
- Event: EventType;
- Condition: String;
- Action: String;

Rule

- Name: String;
A-Policy

- Name: String;
- Type: String;

Variable

1 1..*

1

*

* * *

+WS
+AOP

«enumeración»
ActionType

+PRE
+POST
+TIME

«enumeración»
EventType

-Type : ActionType
Action

Fig. 3. A-policy based services’ composition meta-model (π-SCM)

operation or the conditional execution of an operation
([C]S).

– A-Policies that can be associated to a services’
composition: A-POLICY, RULE, EVENT, CONDITION,
ACTION, STATE, and SCOPE.

As shown in the diagram an A-POLICY is applied to
a SCOPE that can be either an OPERATION (e.g., an
authentication protocol associated to a method exported by a
service), an OPERATOR (e.g., a temporal constraint associated
to a sequence of operators, the authorized delay between
reading a song title in Spotify and updating the walls must
be less then 30 seconds), and a PATH (e.g., executing the
walls’ update under a strict atomicity protocol – all or noting).
It groups a set of ECA rules, each rule having a classic
semantics, i.e, when an event of type E occurs if condition
C is verified then execute the action A. Thus, an A-policy
represents a set of reactions to be possibly executed if one
or several triggering events of its rules are notified.

– The class SCOPE represents any element of a services’
composition (i.e., operation, operator, path).

– The class A-POLICY represents a recovery strategy
implemented by ECA rules of the form EVENT -
CONDITION - ACTION. A A-policy has variables that
represent the view of the execution state of its associated

scope, that is required for executing the rules. The value
of a variable is represented using the type VARIABLE.
The class A-POLICY is specialized for defining specific
constraints, for instance authentication A-policies.

Given a π-SCM model of a specific services’ based
application (expressed according to the π-SCM meta-model),
it is possible to generate its corresponding π-PEWS model
thanks to transformation rules. The following section describes
the transformation rules between the π-SCM and π-PEWS
meta-models of our method.

V. TRANSFORMATION RULES

Table I shows the transformation principle between the
elements of the π-SCM meta-model used for representing
the services’ composition into the elements of the π-PEWS
meta-model. There are two groups of rules: those that
transform services’ composition elements of the π-SCM to
π-PEWS meta-models elements; and those that transform rules
grouped by policies into A-policy types.

A. Transformation of the Services’ Composition Elements of
the π-SCM to the π-PEWS Elements

A named action of the π-SCM represented by Action and
Action:name is transformed to a named class OPERATION

21 Polibits (49) 2014ISSN 1870-9044

Reliable Web Services Composition: An MDD Approach

Application	 ListenMusic	
<<External	 false>>	

<<External	 true>>	

Facebook	

Twitter	

Spotify	

<<External	 true>>	

<<External	 true>>	

AOP	
GetSong	

AOP	
PublishMusic	

AOP	
PublishingOK	

WS	
ListenMusic	

WS	
UpdateMusic	

WS	
UpdateMusic	

SongData	

SongData	
SongData	

OK	
OK	

Confirmation	 PublishMusic	

<<A-‐Policy>>	
HTTPAuthPolicy	

Username:	 String	
Password:	 String	

<<A-‐Policy>>	
OAuthPolicy	

Token:	 token	

<<Rule>>	
R1	

Event:	 PRE	
Condition:	 event.activityName	 ==	
scope.name	 AND	 token	 ==	 null	
Action:	 token	 =	 getToken()	

<<Rule>>	
R2	

Event:	 PRE	
Condition:	 event.activityName	 ==	
scope.name	 AND	 token	 !=	 null	 AND	
token.isExpired()	 ==	 true	
Action:	 token	 =	 renewToken()	

<<Rule>>	
R1	

Event:	 PRE	
Condition:	 event.activityName	 ==	
scope.name	 	
Action:	
Scope.httpRequest.Credentials	 =	
newNetworkCredential(username,	
password);	

Business
Collaborator

-Type : ActionType
Action

ServiceActivity

Fig. 4. Services’ composition model for the business service “To publish music”

with a corresponding attribute name OPERATION:NAME.
A named service activity represented by the elements
ServiceActivity and ServiceActivity:name of the π-SCM,
are transformed into a named operation of the π-PEWS
represented by the elements COMPOSITEOPERATION and
COMPOSITEOPERATION:NAME. When more than one action
is called, according to the following composition patterns
expressed using the operators merge, decision, fork and join
in the π-SCM the corresponding transformations, according
to the PEWS operators presented above, are (see details in
Table I):

– op1.op2 if no ControlNode is specified
– (op1 ‖ op2).op3 if control nodes of type fork, join are

combined
– (op1 + op2).op3 if control nodes of type decision, merge

are combined

In the scenario “To Publish Music” the service activity
PublishMusic of the π-SC model specifies calls to two
Activities of type UpdateMusic, respectively concerning
the Business Services Facebook and Twitter. Given that
no ConstrolNode is specified by the π-SC model, the

corresponding transformation is the expression that defines a
Composite Operation named PublishSong of the π-PEWS
model of the form (PublishFacebook ‖ PublishTwitter).

B. Transformation of Rules Grouped by A-policies in the π-
SCM to A-Policies of π-PEWS

The A-policies defined for the elements of the π-SCM are
transformed into A-POLICY classes, named according to the
names expressed in the source model. The transformation of
the rules expressed in the π-SCM is guided by the event
types associated to these rules. The variables associated to
an A-policy expressed in the π-SCM as <Variable:name,
Variable:type> are transformed into elements of type
VARIABLE with attributes NAME and TYPE directly specified
from the elements Variable:name and Variable:type of the
π-SCM model.

As shown in Table I, for an event of type Pre the
corresponding transformed rule is of type PRECONDITION;
for an event of type Post the corresponding transformed
rule is of type POSTCONDITION; finally, for an event
of type TimeRestriction the corresponding transformed rule

22Polibits (49) 2014 ISSN 1870-9044

Genoveva Vargas-Solar, Valeria de Castro, Plácido Antonio de Souza Neto, Javier A. Espinosa-Oviedo, Esperanza Marcos, et al.

Path

-Alias : String
Operation

-nameOperator : OperatorType
Operator

+SEQUENCE
+PARALLEL
+CHOICE
+LOOP

«enumeración»
OperatorType

+REQ
+ACT
+TERM

«enumeración»
StateType

+ActivityPrepared
+TermActivity
+Activity

«enumeración»
EventType

-name : String
PEWSCTSpec

-name : String
-WSDLAddress : String

Namespace
-name : String

TypeOperation

CompositeOperation

-name : String
-value : String

Variable

-name : String
APolicy

Scope

-type : StateType
State

-act : String
Action

-type : EventType
Event

-expression : String
Condition

Rule

Precondition PostconditionTimeRestriction

-canHave

1..*
1

1

1..*
-contains

1
1

0..*

-defines
0..1

0..*

1
1..*

-defines

0..*

1..*
- isRelatedWith

1

1

1..*
-calls

1..*

-hasSome

0..*

-defines

0..1

1..*

-condition

1

0..1

-hasState

0..*

0..1

0..*

1

0..*

-isDefinedIn

1

1..*

1 1..*

-contains

0..1

-representsAn

1
-left

0..1

-right

0..1

-leftOp

0..1

-rightOp

Fig. 5. π-PEWS Metamodel

is of type TIME. The condition expression of a rule in
the π-SCM (Rule:condition) is transformed into a class
Condition:expression where the attributes of the expression
are transformed into elements of type ATTRIBUTE.

In the scenario “To Publish Music” the Policies
OAuthPolicy and HTTPAuthPolicy of the π-SCM model are
transformed into A-policies of type Precondition of the
π-PEWS model of the scenario. Thus in both cases the
events are of type ActivityPrepared. These policies, as
stated in the π-SCM model, are associated to Activities.
In the corresponding transformation they are associated to
Operations PublishFacebook and PublishTwitter.

VI. IMPLEMENTATION ISSUES

This section describes the πSOD-M development en-
vironment that implements the generation of A-policies’
based services’ compositions. For a given services’ based

application, the process consists in generating the code starting
from a π-SCM modeling an application. Note that the services’
composition model is not modeled from scratch, but it is the
result of a general process defined by the πSOD-M method in
which a set of models are built following a service oriented
approach [6].

A. πSOD-M Development Environment

Figure 6 depicts a general architecture of the πSOD-M
Development Environment showing the set of plug-ins
developed in order to implement it. The environment
implements the abstract architecture shown in Figure 2. Thus,
it consists of plug-ins implementing the π-SCM and π-PEWS
meta-models used for defining models specifying services’
compositions and their associated policies; and ATL rules for
transforming PSM models (model to model transformation)
and finally generating code (model to text transformation).

23 Polibits (49) 2014ISSN 1870-9044

Reliable Web Services Composition: An MDD Approach

TABLE I
TRANSFORMATION RULES: FROM π-SERVICECOMPOSITION TO π-PEWS

Source: π-SCM Mapping Rules Target: π-PEWS
Action – An Action in the source model corresponding to an external Business Collaborator is mapped to an

Operation in target model.
– The Action:name in the source model is transformed into Operation:name in the target model.

Operation: alias

Service Activity – The ServiceActivity in the source model is mapped to a Composite Operation in target model when
more than one Actions are called.
– If Composite Operation is generated for a given Service Activity then the ServiceActivity:name in
the source model is mapped to CompositeOperation:name in the target model.

Type Operation,
Composite Operation

Control Nodes – The Control Node in the source model is mapped to a Operator in target model. According to the
type of Control Node (merge, decision, join, fork) the expression of the Composite Operation is:
• Sequence if no ControlNode is specified;
• Parallel - Sequence for a ControlNodes pattern fork – join;
• Choice - Sequence for a ControlNodes pattern decision – merge

Operator

Business
Collaborator

A BusinessCollabortor:isExternal in the source model generates a Namespaces in the target model Namespace

Rule:event The Rule’s attribute event in the source model is transformed into an Event:type of the target model.
In this case attribute is mapped to an entity with an attribute.
The Event Type of a Rule in the target model is determined by the Rule type:
• Event Type of a Precondition Rule is ActivityPrepared;
• Event Type of a Postcondition Rule is TermActivity;
• Event Type of a TimeRestriction Rule is Activity

Event Type, Event

Rule: condition The Rule’s attribute condition in the source model is transformed into a Condition:expression in the
target model. In this case, an attribute is mapped into an entity with an attribute.

Condition

Rule:action The Rule:action in the source model is transformed in an Action:act in the target model. The attribute
action is mapped to an entity with an attribute. In the target model an action is executed according to
the rule condition value (true/false).

Action

Policy – Every Policy associated to an element (Business Collaborator, Service, Activity, Action) in the
source model becomes an APolicy associated to the corresponding element in the target model.
– The name attribute of a Policy in the source model becomes an Apolicy:name of the target model.

APolicy

Variable Every Variable, and its attributes, associated to a Policy in the source model becomes a Variable
associated to an APolicy in the target model. The variables can be used in an APolicy’s Condition of
the target model.

Variable

Rule:event For a Rule in the source model, depending on the Event Type, the corresponding transformation in the
target model is: Precondition, Postcondition or Time Restriction Rule

Precondition,
Postcondition, Time
Restriction, Rule

– We used the Eclipse Modeling Framework (EMF)6 to
implement the meta-models π-SCM and π-PEWS. Start-
ing form these meta-models, we developed the models’
plug-ins needed to support the graphical representation of
the π-SCM and π-PEWS models (π-ServiceCompostion
Model and π-PEWS Model plug-ins).

– We used ATL7 for developing the mapping plug-in
implementing the mappings between models (π-Ser-
viceComposition2π-PEWS Plug-in).

– We used Acceleo8 for implementing the code generation
plug-in. We coded the pews.mt program that imple-
ments the model to text transformation for generating
executable code. It takes as input a π-PEWS model
implementing a specific services’ composition and it
generates the code to be executed by the A-policy based
services’ composition execution environment.

As shown in Figure 6, once an instance of a PEWS
code is obtained starting form a particular π-services’

6The EMF project is a modeling framework and code generation facility
for building tools and other applications based on a structured data model.

7http://eclipse.org/atl/. An ATL program is basically a set of rules that define
how source model elements are matched and navigated to create and initialize
the elements of the target models.

8http://www.acceleo.org/pages/home/en

composition model it can be executed over A-policy based
services’ composition execution environment consisting of a
composition engine and a A-policy manager. The A-policy
manager consists of three main components Manager,
for scheduling the execution of rules, C-Evaluator and
A-Executor respectively for evaluating rules’ conditions and
executing their actions. The A-policy Manager interacts with a
composition engine thanks to a message communication layer
(MOM).

The composition engine manages the life cycle of the
composition. Once a composition instance is activated, the
engine schedules the composition activities according to the
composition control flow. Each activity is seen as the process
where the service method call is executed. The execution of
an activity has four states: prepared, started, terminated, and
failure. The execution of the control flow (sequence, and/or
split and join) can also be prepared, started, terminated and
raise a failure.

At execution time, the evaluation of policies done by the
A-policy manager must be synchronized with the execution of
the services’ composition (i.e., the execution of an activity or
a control flow). Policies associated to a scope are activated
when the execution of its scope starts. A A-policy will have to
be executed only if one or several of its rules is triggered. If

24Polibits (49) 2014 ISSN 1870-9044

Genoveva Vargas-Solar, Valeria de Castro, Plácido Antonio de Souza Neto, Javier A. Espinosa-Oviedo, Esperanza Marcos, et al.

PE
W

S	
	

En
gi
ne

	

MOM	

A
-‐P
ol
ic
y	
En

gi
ne

	

Manager	

A-‐Executor	

C-‐Evaluator	 Event	 Monitor	

En
gi
ne

	

Mappings	
Plug-‐in

Models	
Plug-‐ins π-‐ServiceComposition	 Model	 Plug-‐in

Editor
.	 .	 .	

π-‐SCM	
Metamodel.ecore	

π-PEWS	 Model	 Plug-‐in

	 Editor π-PEWS	
Metamodel.ecore	

P-‐ServiceComposition2PEWSCT	 Plug-‐in

π-‐SCM	 2	
π-PEWS.atl

π-PEWS	
Model	

π-‐ServiceComposition	
Model

ConformsTo

Code	 Generation
PEWS.mt PEWSChain

PEWS	
Code	

ConformsTo

Fig. 6. πSOD-M Development Environment

several rules are triggered the A-policy manager first builds an
execution plan that specifies the order in which such rules will
be executed according to the strategies defined in the following
section. If rules belonging to several policies are triggered then
policies are also ordered according to an execution plan. The
execution of policies is out of the scope of this paper, the
interested reader can refer to [9] for further details.

VII. RELATED WORK

Work related with our approach includes standards
devoted for expressing non-functional constraints for services
and services’ compositions. It also includes methods and
approaches for modeling non-functional constraints.

Current standards in services’ composition implement func-
tional, non-functional constraints and communication aspects

by combining different languages and protocols. WSDL
and SOAP among others are languages used respectively
for describing services’ interfaces and message exchange
protocols for calling methods exported by such services. For
adding a transactional behaviour to a services’ composition it
is necessary to implement WS-Coordination, WS-Transaction,
WS-BussinessActivity and WS-AtomicTransaction.

The selection of the adequate protocols for adding a
specific non-functional constraints to a services’ composition
(e.g., security, transactional behaviour and adaptability)
is responsibility of a programmer. As a consequence,
the development of an application based on a services’
composition is a complex and a time-consuming process.
This is opposed to the philosophy of services that aims at
facilitating the integration of distributed applications. Other
works, like [16] introduce a model for transactional services

25 Polibits (49) 2014ISSN 1870-9044

Reliable Web Services Composition: An MDD Approach

composition based on an advanced transactional model. [17]
proposes an approach that consists of a set of algorithms and
rules to assist designers to compose transactional services.
In [18] the model introduced in [19] is extended to web
services for addressing atomicity.

There are few methodologies and approaches that address
the explicit modeling of non functional properties for
service based applications. Software process methodologies
for building services based applications have been proposed
in [7], [20], [21], [22], and they focus mainly on the modeling
and construction process of services based business processes
that represent the application logic of information systems.

Design by Contract [23] is an approach for specifying web
services and verifying them through runtime checkers before
they are deployed. A contract adds behavioral information to
a service specification, that is, it specifies the conditions in
which methods exported by a service can be called. Contracts
are expressed using the language jmlrac [24]. The Contract
Definition Language (CDL) [20] is a XML-based description
language, for defining contracts for services. There are an
associated architecture framework, design standards and a
methodology, for developing applications using services. A
services’ based application specification is generated after
several [25] B-machines refinements that describe the services
and their compositions. [7] proposes a methodology based on a
SOA extension. This work defines a service oriented business
process development methodology with phases for business
process development. The whole life-cycle is based on six
phases: planning, analysis and design, construction and testing,
provisioning, deployment, and execution and monitoring.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presented πSOD-M for specifying and designing
reliable service based applications. We model and associate
policies to services’ based applications that represent both
systems’ cross-cutting aspects and use constraints stemming
from the services used for implementing them. We extended
the SOD-M method, particularly the π-SCM (services’
composition meta-model) and π-PEWS meta-models for
representing both the application logic and its associated
non-functional constraints and then generating its executable
code. We implemented the meta-models on the Eclipse
platform and we validated the approach using a use case that
uses authentication policies.

Non-functional constraints are related to business rules
associated to the general “semantics” of the application
and in the case of services’ based applications, they also
concern the use constraints imposed by the services. We
are currently working on the definition of a method for
explicitly expressing such properties in the early stages of
the specification of services based applications. Having such
business rules expressed and then translated and associated to
the services’ composition can help to ensure that the resulting
application is compliant to the user requirements and also to
the characteristics of the services it uses.

Programming non-functional properties is not an easy task,
so we are defining a set of predefined A-policy types with
the associated use rules for guiding the programmer when she
associates them to a concrete application. A-policy type that
can also serve as patterns for programming or specializing the
way non-functional constraints are programmed.

ACKNOWLEDGMENTS

This work was partially financed by the projects CLEVER,
STIC-AMSUD, and MASAI. P. A. de Souza Neto was funded
by CAPES/STIC-AMSUD Brazil, BEX 4112/11-3.

REFERENCES

[1] M. Bell, Service-Oriented Modeling: Service Analysis, Design, and
Architecture. Wiley, New Jersey, 2008.

[2] M. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann, “Service-
Oriented Computing: State of the Art and Research Challenges,” IEEE
Computer, vol. 40, no. 11, 2007.

[3] A. Watson, “A brief history of MDA,” 2008.
[4] A. Arsanjani, S. Ghosh, A. Allam, T. Abdollah, S. Ganapathy,

and K. Holley, “SOMA: A method for developing service-oriented
solutions,” IBM System Journal, vol. 47, no. 3, 2008.

[5] A. W. Brown, S. K. Johnston, G. Larsen, and J. Palistrant, “SOA
Development Using the IBM Rational Software Development Platform:
A Practical Guide,” in Rational Software, 2005.

[6] V. De Castro, E. Marcos, and R. Wieringa, “Towards a service-oriented
MDA-based approach to the alignment of business processes with IT
systems: From the business model to a web service composition model,”
International Journal of Cooperative Information Systems, vol. 18, no. 2,
2009.

[7] M. P. Papazoglou and W.-J. van den Heuvel, “Service-oriented design
and development methodology,” Int. J. Web Eng. Technol., vol. 2, no. 4,
pp. 412–442, 2006.

[8] P. Queiroz and R. Braga, “Application engineering of service-based
software product lines,” in SAC, 2012, pp. 1996–1997.

[9] J.-A. Espinosa-Oviedo, G. Vargas-Solar, J.-L. Zechinelli-Martini, and
C. Collet, “Policy driven services coordination for building social
networks based applications,” in In Proc. of the 8th Int. Conference on
Services Computing (SCC’11), Work-in-Progress Track. Washington,
DC, USA: IEEE, July 2011.

[10] V. De Castro, E. Marcos, and J. Vara, “Applying cim-to-pim model
transformations for the service-oriented development of information
systems,” IInformation and Software Technology, vol. 53, no. 19, 2011.

[11] J. Miller and J. Mukerji, “MDA guide,” 2003, downloaded on
27-Jun-2014. [Online]. Available: http://www.omg.org/cgi-bin/doc?
omg/03-06-01

[12] J. Gordijn and J. Akkermans, “Value based requirements engineering:
Exploring innovative e-commerce idea,” Requirements Engineering
Journal, vol. 8, no. 2, 2003.

[13] J. A. Espinosa-Oviedo, G. Vargas-Solar, J.-L. Zechinelli-Martini, and
C. Collet, “Non-functional properties and services coordination using
contracts,” in In proceedings of the 13th Int. Database Engineering and
Applications Symposium (IDEAS 09). Cetraro, Italy: ACM, 2009.

[14] C. Ba, M. Halfeld-Ferrari, and M. A. Musicante, “Composing web
services with PEWS: A trace-theoretical approach,” in ECOWS, 2006,
pp. 65–74.

[15] P. A. Souza Neto, M. A. Musicante, G. Vargas-Solar, and J.-L.
Zechinelli-Martini, “Adding contracts to a web service composition
language,” LTPD – 4th Workshop on Languages and Tools for
Multithreaded, Parallel and Distributed Programming, September 2010.

[16] M.-C. Fauvet, H. Duarte, M. Dumas, and B. Benatallah, “Handling
transactional properties in web service composition,” in WISE 2005:
6th International Conference on Web Information Systems Engineering,
vol. 3806. LNCS, Springer-Verlag, Octobre 2005, pp. 273–289.

[17] S. Bhiri, C. Godart, and O. Perrin, “Reliable web services composition
using a transactional approach,” in e-Technology, e-Commerce and e-
Service, ser. EEE, vol. 1. IEEE, March 2005, pp. 15–21.

26Polibits (49) 2014 ISSN 1870-9044

Genoveva Vargas-Solar, Valeria de Castro, Plácido Antonio de Souza Neto, Javier A. Espinosa-Oviedo, Esperanza Marcos, et al.

[18] K. Vidyasankar and G. Vossen, “A multi-level model for web service
composition,” in ICWS. IEEE Computer Society, 2004, p. 462.

[19] H. Schuldt, G. Alonso, C. Beeri, and H.-J. Schek, “Atomicity and
Isolation for Transactional Processes,” ACM Transactions on Database
Systems (TODS), vol. 27, no. 1, pp. 63–116, Mar. 2002.

[20] N. Milanovic, “Contract-based web service composition,” Ph.D.
dissertation, Humboldt-Universität zu Berlin, 2006.

[21] G. Feuerlicht and S. Meesathit, “Towards software development
methodology for web services,” in SoMeT, 2005, pp. 263–277.

[22] E. Ramollari, D. Dranidis, and A. J. H. Simons, “A survey of service
oriented development methodologies.”

[23] R. Heckel and M. Lohmann, “Towards contract-based testing of
web services,” in Proceedings of the International Workshop on
Test and Analysis of Component Based Systems (TACoS 2004),
M. Pezzé, Ed., vol. 116, 2005, pp. 145–156. [Online]. Available:
http://www.cs.le.ac.uk/people/rh122/papers/2005/HL05TACoS.pdf

[24] G. T. Leavens, Y. Cheon, C. Clifton, C. Ruby, and D. R. Cok, “How the
design of JML accomodates both runtime assertion checking and formal
verification,” in FMCO, 2002, pp. 262–284.

[25] J.-R. Abrial, M. K. O. Lee, D. Neilson, P. N. Scharbach, and I. H.
Sørensen, “The B-method,” in VDM Europe (2), ser. Lecture Notes in
Computer Science, vol. 552. Springer, 1991, pp. 398–405.

27 Polibits (49) 2014ISSN 1870-9044

Reliable Web Services Composition: An MDD Approach

