

Abstract—In a large network, it is extremely difficult for an

administrator or security personnel to detect which computers

are being attacked and from where intrusions come. Intrusion

detection systems using neural networks have been deemed a

promising solution to detect such attacks. The reason is that

neural networks have some advantages such as learning from

training and being able to categorize data. Many studies have

been done on applying neural networks in intrusion detection

systems. This work presents a study of applying resilient

propagation neural networks to detect simulated attacks. The

approach includes two main components: the Data Pre-

processing module and the Neural Network. The Data Pre-

processing module performs normalizing data function while the

Neural Network processes and categorizes each connection to

find out attacks. The results produced by this approach are

compared with present approaches.

Index Terms—Computer security, artificial neural network,

resilient propagation.

I. INTRODUCTION

he number of web attacks in the United States was

413,622,456, which shows the importance of detecting

and preventing intrusions [1]. Moreover, according to Shum

and Malki [2], from July 2004 to August 2004, the number of

network attacks increased 55%. Those statistics alarm

network security communities to develop more secured

solutions that could protect the tenets of information security:

confidentiality, integrity, and availability [3]. There are many

proposed methods to develop an intrusion detection system;

however, the neural network is considered as an alternative

solution to detect zero day attacks. An advantage of neural

networks for intrusion detection is that they can “acquire

knowledge through learning and store it in inter-neuron

connections known as synaptic weights” [4]. In other words,

neural networks can detect attacks after they were trained with

a subset of network traffic representing the signatures of the

attacks to be detected. This method is called “Supervised

Learning” because the neural network needs to be trained.

 Manuscript received on January 15, 2015, accepted for

publication on May 10, 2015, published on June 15, 2015.

The authors are with Texas A&M University–Corpus Christi,

Computer Science, 6300 Ocean Dr., Corpus Christi, TX, USA (e-

mail: {mario.garcia, tung.trinh}@tamucc.edu).

(Unsupervised Neural Network can detect attacks without

training.) There are several training algorithms to train neural

networks such as back propagation, the Manhattan update

rule, Quick propagation, or Resilient propagation.

This research describes a solution of applying resilient

propagation artificial neural networks to detect simulated

attacks in computer networks. The resilient propagation is a

supervised training algorithm. The term “supervised”

indicates that the neural networks are trained with expected

output. The resilient propagation algorithm is considered an

efficient training algorithm because it does not require any

parameter setting before being used [14]. In other words,

learning rates or update constants do not need to be computed.

The approach is tested on eight neural network configurations

and the results are compared with other approaches found in

the literature.

A. Neural Networks and Intrusion Detection

An intrusion is defined as “an attempt to gain unauthorized

accesses to network resources” [5]. External people or internal

users of networks can be responsible for an intrusion. There

are many types of intrusions that are being used by hackers

such as viruses, Trojan, attempt break in, successful break in,

and Denial-of-Service [6]. An intrusion detection system is

software and hardware components to perform three network

defense functions: prevention, detection, and response. There

are two main criteria to classify intrusion detection systems:

the trigger and the source of data used by intrusion detection

systems [7]. Based on the trigger, intrusion detection systems

can be divided into two types: misuse detection and anomaly

detection. Misuse detection is a method of using attack

databases to identify attacks. Every activity is compared with

known attacks to figure out if that activity is an attack or not.

In contrast, anomaly detection finds intrusions by keeping

track of characteristics of profiles of authorized users or

groups in the network and alerting on discrepancies. Intrusion

detection systems use alarms to label those profiles.

A neural network is “an information processing system that

is inspired by the way biological nervous systems, such as the

brain, process information” [8]. In other words, a neural

network consists of a number of elements which work

together to solve a given problem. In additional, a neural

Detecting Simulated Attacks in Computer

Networks Using Resilient Propagation

Artificial Neural Networks
Mario A. Garcia and Tung Trinh

T

5 Polibits (51) 2015http://dx.doi.org/10.17562/PB-51-1 • pp. 5–10

IS
S

N
 2395-8618

network also can be trained to gain knowledge before being

used. A neural network contains two main components: the

input layer and the output layer. Depending on the complexity

of the problem, a neural network can have several hidden

layers between the input layer and the output layer. The

number of neurons in the input layer should match the size of

the input. Normally, the neuron in the output layer is one. The

hidden layer plays a role of a data processing station. These

layers handle data from the input layer and transfer processed

data to the output layer. Neurons in two adjacent layers are

connected by the weights. These weights are used to compute

the output and to minimize the error produced by the neural

networks.

There are two algorithms used to define the structure of a

neural network: the topology algorithm and the training algo-

rithm. The topology algorithm refers to the way neurons are

connected and how data is transferred between neurons, while

the training algorithm denotes the method to adjust weights

between neurons to produce accurate output and minimal

error. The function to calculate the output is the activation

function attached in hidden layers and the output layer.

Equation 2.1 shows how to compute the output from a node j.

𝑜𝑢𝑡𝑝𝑢𝑡𝑗 = 𝑓(𝑥𝑖) = 𝑓 (∑𝑜𝑖𝑤𝑖𝑗

𝑛

𝑖=1

) (2.1)

where output j is the output of node j, xj is the data of node j,

oi is the output of node i connected to j with the corresponding

weight wij, and f() is the activation function. There are three

main activation functions used in neural networks: linear,

sigmoid, and hyperbolic tangent. Each activation function

scales output in a specific range. Input used in neural

networks should be normalized into numbers in that range.

II. STATE OF THE ART

In last few years, networking researchers have developed

intrusion detection systems using various neural network

types. Shum and Malki [2] described a feedforward neural

network using the back propagation algorithm implemented

with three layers: an input layer, a hidden layer, and an output

layer. Similarly, Poojitha, Naveen kumar, and JayaramiReddy

[6] introduced an intrusion detection system using an artificial

neural network using the back propagation algorithm. This

proposed approach uses two phases, training and testing, to

detect intrusion activities. First, the intrusion detection system

is trained to “capture the underlying relationship between the

chosen inputs and outputs” [6].

After that, the system is tested with an available data set.

Mukhopadhyay, Chakraborty, Chakrabarti, and Chatterjee [9]

presented a study of applying the back propagation algorithm

in intrusion detection systems. This approach detects

intrusions in four steps: collect data, convert data into

MATLAB format, convert data into double data type. This

data is used as input to the neural network. Yao [10]

expressed a combination of the back propagation neural

network and the genetic algorithm. This intrusion detection

system has eight modules including: a network packet capture

device, the preprocessing module (a), the normal data

detection module, the misuse detection module, a statistical

module, the preprocessing module (b), the abnormal data

detection module, and the alert response module. This

approach is proposed to “overcome the blindness of

optimization” and “avoid occurring local convergence”. Jiang,

Yang, and Xia [4] introduced an intrusion detection system

based on the improvement of the Self-Organizing Maps

algorithm. This approach can “increase detection rate and

improve the stability of intrusion detection” by modifying the

strategy of “winner-take-all” and using interaction weight

which is the effect between each neuron in the output

layer [4].

Han [11] proposed an improved model of the Adaptive

Resonance Theory 2-A neural network which can “handle

data directly”. This implementation consists of three layers:

F0, F1, and F2. The F0 layer takes input data and transfer to

the layer F1 which “performs a Euclidean normalization” to

filter only acceptable data to send to the F3 layer. The F3

layer then computes the activation value and labels the

winning node as “normal” or “one of the 22 attack types”

based on the classification of the data [11]. Bashah,

Shanmugam, and Ahmed [7] presented a host-based intrusion

detection system using both anomaly detection and misuse

detection trigger with the SOM algorithm. Ahmad, Abdullah,

and Alghamdi [5] described another proposed intrusion

detection system. This system uses resilient back propagation

algorithm to compute weights between neural neurons.

A. The Knowledge Data Discover KDD Cup 1999 Data Set

Intrusion detection systems have been grabbing attention of

computer science researchers in recent years. There are many

approaches have been proposed and presented to network

security communities. Instead of using real data, most of

proposed approaches use either the DARPA 1998 data set or

the KDD Cup 1999 data set or both as the input. The KDD

Cup 1999 data set provide a completed source for

implementing and testing intrusion detection systems. This

database contains 22 different attacks and normal connections

[12]. The data set contains around five million TCP/IP

connections which are labeled as normal or attacks

connections. Each connection record contains 41 features in a

TCP/IP packet and the “Label” feature denoting the category

into that the connection falls. Table I shows 22 intrusion

categories included in the KDD Cup 1999 data set. Besides,

the “normal” value is assigned to normal connections. Each

attack is classified in one of four groups: DoS, U2R, R2L, and

Probe. According to [12], these groups are described as

follows: DoS: denial-of-service; U2R: unauthorized access to

local root privileges; R2L: unauthorized access from remote

machines; Probe: surveillance or other probing.

6Polibits (51) 2015 http://dx.doi.org/10.17562/PB-51-1

Mario A. Garcia and Tung Trinh
IS

S
N

 2395-8618

TABLE I.

ATTACKS IN THE KDD CUP 1999 DATA SET

Group Attack Names

DoS Back, Land, Neptune, Pod, Smurf, Teardrop

U2R Buffer_overflow, loadmodule,

R2L ftp_write, guess_passwd, imap, multihop,

phf, spy, warezclient warezmaster,

Probe ipsweep, nmap, portsweep, satan,

B. The Encog Framework

In 2008, a neural network and machine learning framework

named Encog was published and developed for C/C++, Java

and .NET programming languages by Heaton Research,

Inc. [13]. This framework provides the library for creating

neural networks and normalizing data. Developers can

implement various types of neural network such as

feedforward neural networks, adaptive resonance theory 1

neural networks, and self-organizing map neural networks.

Moreover, Encog also contains several training techniques

like backpropagation, genetic algorithm, Manhattan update

rule propagation, and resilient propagation. In addition,

multiple activation functions are included in Encog such as

Bipolar function, linear function, sigmoid function, and

hyperbolic tangent function. In this research, the Encog is

used to build the neural network in .NET framework.

III. NEURAL NETWORK – INTRUSION DETECTION

SYSTEM DESIGN

According to Heaton [14], neurons in a feedforward neural

network are connected forward. In essence, data is transferred

from the input layer to the hidden layer 1 and so on, but there

are no backward connections. The weight connecting two

neurons in two adjacent layers is calculated randomly in the

initialization of the neural network. Then this weight is

adjusted during the training process. The computation of the

output in a Feedforward neural network is described as

follows. First, input from the input layer is transferred to each

neuron of the hidden layer 1. Then by using Equation 2.1,

output of neurons in the hidden layer 1 is transferred to

neurons in the hidden layer 2. Similarly, each neuron in this

layer generates and then distributes its output to the output

layer. Finally, the neuron in the output layer computes the

final output.

The resilient propagation is a supervised training algorithm.

The term “supervised” indicates that the neural networks are

trained with expected output. The resilient propagation

algorithm is considered the most efficient training algorithm

because it does not require any parameter setting before being

used [14]. In other words, learning rates or update constants

do not need to be computed. As it was previously discussed,

the training algorithm is used to adjust weights to produce

accurate output and minimal error rates. The change in weight

between two neurons is calculated using Equation 3.1:

∆𝑤𝑖𝑗
𝑘 =

{

 −∆𝑖𝑗

𝑘 𝑖𝑓
𝜕𝐸(𝑤𝑘)

𝜕𝑤𝑖𝑗
> 0

+∆𝑖𝑗
𝑘 𝑖𝑓

𝜕𝐸(𝑤𝑘)

𝜕𝑤𝑖𝑗
< 0

0 otherwise

 (3.1)

where E(wk)/wij refers to the partial derivative of the error

with respect to the weight w, wij is the weight of neurons i and

j, ∆𝑖𝑗
𝑘 is the update value, and k expresses the index of

iteration [16]. The update value ∆𝑖𝑗
𝑘 is updated using Equation

3.2:

∆𝑖𝑗
𝑘=

{

 η+ ∆𝑖𝑗

𝑘−1if
𝜕𝐸(𝑤𝑘−1)

𝜕𝑤𝑖𝑗

𝜕𝐸(𝑤𝑘)

𝜕𝑤𝑖𝑗
> 0

η− ∆𝑖𝑗
𝑘−1if

𝜕𝐸(𝑤𝑘−1)

𝜕𝑤𝑖𝑗

𝜕𝐸(𝑤𝑘)

𝜕𝑤𝑖𝑗
< 0

∆𝑖𝑗
𝑘−1 otherwise,

 (3.2)

where 0 < η− < 1 < η+, η+is the increase factor and η−is the

decrease factor. In default, η+ is equal to 1.2 while η− is equal

to 0.5 [14]. If this result is greater than 0, it means the sign has

not changed, so the update value is increased by multiplying

the previous update value with the increase factor.

Nevertheless, if the result is smaller than 0, it means the sign

has changed and the previous is too large. Hence, the update

value is decreased by multiplying the previous update value

with the decrease factor. In order to evaluate how well the

neural network is trained, the mean square error method is

applied to calculate the error between actual output and

expected output. Equation 3.3 describes the mean square

error:

𝑀𝑆𝐸 =
1

𝑛
∑(𝑎𝑐𝑡𝑢𝑎𝑙𝑡 − 𝑖𝑑𝑒𝑎𝑙𝑡)

2
𝑛

𝑡=1

 (3.3)

where MSE is the mean square error value, n is the size of

actual output, actual t is the tth actual output and the ideal t is

the corresponding ideal output.

The activation function used in the neural network is the

hyperbolic tangent function, which is shown in Equation 3.4.

𝑓(𝑥) =
𝑒2𝑥 − 1

𝑒2𝑥 + 1
 (3.4)

A. The Data Pre-processing Module

As it was mentioned, neural networks are trained using the

activation function. Depending on the activation function used

in the neural network, data is normalized in different ranges

which can be (0, 1) or (–1, 1). Because the activation function

used in the neural network in this research produces output

between -1 and 1, training data and testing data are

normalized to values in the range from –1 to 1. In the KDD

Cup 1999 data set, there are four features in an individual

TCP connection in text format: protocol_type, service, flag,

and label. Because each of these features has various groups

of values, each group is converted into a number between –1

7 Polibits (51) 2015http://dx.doi.org/10.17562/PB-51-1

Detecting Simulated Attacks in Computer Networks Using Resilient Propagation Artificial Neural Networks
IS

S
N

 2395-8618

and 1. Other features are in numeral format, so they are

normalized by Equation 3.5:

𝑓(𝑥) =
(𝑥 − 𝑑𝐿)(𝑛𝐻 − 𝑛𝐿)

𝑑𝐻 − 𝑑𝐿
+ 𝑛𝐿 (3.5)

where x: value needed to be normalized; dL: the lowest value

of the data; dH: the highest value of the data; nH: the highest

value of the normalization range; nL: the lowest value of the

normalization range.

IV. NEURAL NETWORK INTRUSION DETECTION

SYSTEM TESTING

Before describing the evaluation plan used in this thesis, a

brief review of evaluations of previous and related work is

provided. The KDD Cup 1999 data set is used for creating

training and testing data sets in every approach. In [2], the

training set contains 196 records while three testing sets are

the normal traffic set, the known attack set, and the unknown

attack set which consist of 50, 25, and 25 records respectively.

The records in normal traffic and known attack testing set are

extracted from the training set while the unknown attack set

contains different data. The results of the evaluation are:

100% of normal traffic and know attacks are detected only

76% of unknown attacks are classified. The results seem very

accurate, but the detection rate of new attack is quite low,

only 76%. Moreover, the detection rate could increase if the

size of testing data increments.

In [4], the approach uses the KDD Cup 1999 data set for

training and testing data sets. Each category of attacks is

trained and tested individually [4]. Detection rates are only

good in three types, normal, dos, and probe, while the other

two groups have very low accuracy. Furthermore, most of the

testing sets have smaller sizes than their corresponding

training sets. In general, the proposed solution does not

perform well in detecting all types of attacks. The results are

quite better than the results computed in [4]: 99.76% of

normal, 100% of DoS and Probe, 67.77% of U2R and 36.84%

of R2L. Nevertheless, the classifier accuracies of U2R and

R2L are not acceptable.

Another similar evaluation method is described in [11]. The

system is trained 10 times with the same 10% subset of the

entire KDD Cup 1999 data set and then is tested with the

entire data set. In other words, the number of training record

is equal to the number of testing records. The lowest detection

rate is 90.385% while the highest is 99.946%. The results are

accurate, but in order to get that achievement, the neural

network is trained with the same amount of data of the testing

data. Hence, they do not fully express the capability of neural

networks that is detecting new objects based on training

objects. In [5], the work focuses on detection of DoS attacks.

The proposed system produces 96.16% detection rate in

case of attack detection with the highest ratio is 100% and the

lowest scale is 79%. However, the testing data set is

extremely small, 11 back attacks and 5 normal packets while

the numbers of records of other attacks are not mentioned.

Meanwhile, the training data set contains full feature packet of

DoS attacks of the KDD Cup 1999 data set [5]. Hence, it is

hard to estimate the performance of this system. The method

proposed in [9] uses a different method to evaluate neural

networks: 2 testing levels. At level 1, the system is trained and

then tested with the same data set. Consequently, the success

rate is very high: 95.6%. However, at level 2, when the

system is tested with the new data set, the success rate reduces

to 73.9% [9]. Therefore, this proposed method is considered

not accurate.

A. Evaluation Plan

As discussed in the previous section, some prior studies do

not produce accurate results. In some cases, the results are

lower than 70% which is unacceptable. Only the approach

presented in [11] can generate over a 90% detection rate.

However, this method uses the same amount of data for

training and testing the neural network which may not be

practical. Therefore, this study focuses on producing accurate

testing results using a small amount of training data. In order

to evaluate this approach, several neural networks are tested

with the same training and testing data for comparing the

efficiency of different structures of neural networks. All

neural networks have the same input layer and output layer,

resilient propagation training algorithm, and hyperbolic

tangent activation function. The only different configuration is

the number of neurons in hidden layers. The first number in

the Structure column refers to the number of neurons of the

hidden layer 1 while the second number is the number of

neurons of the hidden layer 2. For example, the neural

network NN1 has 9 neurons in the hidden layer 1 and 10

neurons in hidden layer 2. Although there are more choices,

due to the limitation of time, only 8 neural networks are

trained and tested.

The training data set contains 73,249 records extracted

from the entire KDD Cup 1999 data set. The training set is

then normalized using the Data Pre-processing module. There

are 37,860 records of normal traffic included in the training

data. At an individual iteration of training process, the input of

the neural network is the set of 41 TCP/IP features of a

particular record while the ideal output is the “Label” feature

of that record as well. Each element of the input is fed into

each neuron of the input layer respectively. Then the training

process continues until the end of the training set is reached.

This is to ensure that the neural networks have knowledge

of all attacks in the training data. If the neural networks are

trained using an error rate, the training process stops

immediately after that error rate is achieved. Hence, the neural

networks may not be trained with attacks in the rest of the

training data set. After being trained, each neural network is

tested with several testing data sets. Unlike previous works, in

this study, the overall detection rates are considered instead of

individual attacks’ detection rates. First, the neural networks

8Polibits (51) 2015 http://dx.doi.org/10.17562/PB-51-1

Mario A. Garcia and Tung Trinh
IS

S
N

 2395-8618

are tested with the same training set to verify they can detect

records used to train them. Then, they are tested against a

normal data set, which consists of 83,538 records.

This is to verify that the neural networks can detect normal

traffic correctly to prevent false positives. After that, each

neural network is tested with the 10-percent subset of the

KDD Cup 1999 data set. This subset contains 494,021

records. The input and the ideal output in each test case are

computed similarly as presented in the training process. The

detection is considered correct if the absolute value of the

actual output and the expected output is less than 0.04.

Otherwise, it is counted as an incorrect detection. Similarly,

the output is compared with each individual connection,

including both attack values and normal values, in succession.

B. Results

In this study, the training data set contains more than

70,000 records and 23 different types of output. Hence, the

smaller the error is, the better trained neural networks are. The

best training error rates among all neural networks was

0.00005 and the worst was 0.00029. The average time it took

to train each neural network was 12 hours. The obtained error

rates denote that the actual output is very close to the ideal

output.

After being trained, the neural networks were tested against

the training data set itself. The best result was 99.89%

generated by the Neural Network 8, while the worst was

99.4% computed by the Neural Network 7. After being

trained and tested with the training data set, each neural

network was tested using the normal traffic data set extracted

from the KDD Cup 1999 data set. Figure 1 shows the results

of this test.

The worst result is 95% produced by the Neural Network 2

while the Neural Network 8 once again produces the best

result. In essence, the Neural Network 8 can detect up to

99.99912% normal traffic. Finally, the neural networks are

tested with the 10-percent subset of the KDD Cup 1999 data

set. This subset consists of 494,021 records, which is equal to

6.7 times of the training data set. There are 8 types of

intrusions in the 10-percent subset have similar numbers of

records in the training data set. Meanwhile, the rest has the

big differences with the training data set.

As an illustration, the neptune attack type has only 20,482

records in the training data set, but it has 10,7201 records in

the 10-percent subset. Figure 2 shows the results after testing

eight neural networks with the 10-percent subset. The

differences between the testing neural networks are really

small. The best result is 0.06% and the worst one is 0.08%.

Hence, the average result is about 93%. This result is

acceptable because the training data set is much smaller than

the testing data set. Moreover, the result also shows what is

happening in real life where the network traffic is much larger

Fig. 1. Training detection rates

Fig. 2. Detection rates in 10-percent subset test

99.50%

99.70% 99.70%

99.60%

99.81%

99.58%

99.40%

99.89%

99.10%

99.20%

99.30%

99.40%

99.50%

99.60%

99.70%

99.80%

99.90%

100.00%

NN1 NN2 NN3 NN4 NN5 NN6 NN7 NN8

93.20%

94.00%

93.00% 93.00% 93.00% 93.00%

92.00%

93.10%

91.00%

91.50%

92.00%

92.50%

93.00%

93.50%

94.00%

94.50%

NN1 NN2 NN3 NN4 NN5 NN6 NN7 NN8

9 Polibits (51) 2015http://dx.doi.org/10.17562/PB-51-1

Detecting Simulated Attacks in Computer Networks Using Resilient Propagation Artificial Neural Networks
IS

S
N

 2395-8618

than any data sets. After several tests, the Neural Network 8,

which contains 14 neurons in each hidden layer shows the

outstanding performance among 8 neural networks. Testing

results generated from this neural network are used to

compare with other studies.

V. CONCLUSION

This study already proves a reliable and efficient solution

for detecting simulated attacks in computer networks. The

system includes two components: the Data Pre-Processing

module and the Neural Network. The Data Pre-processing

module plays a role of processing data in the KDD Cup 1999

data set before data is used in the Neural Network.

Meanwhile, the Neural Network is to detect simulated attacks.

There are total eight different structures used to evaluate the

Neural Network. These structures are the combinations of

different numbers of neurons in two hidden layers of the

Neural Network. These eight neural networks are built using

the feedforward algorithm and trained using the resilient

propagation algorithm. Each neural network is trained with a

73,249-records training data set. Then it is tested against three

different testing data sets: the training data set, the normal

traffic data set, and the 10-percent subset of the KDD Cup

1999 data set. The detection rates are 99.89%, 99.9%, and

93% respectively. The proposed approach produces highly

accurate results compared with other approaches. However,

while most previous studies use large training data and small

testing data, the ratio of training data and testing data in this

study is 0.15.

VI. FUTURE WORK

Training a neural network is a time consuming process. In

this research it took twelve hours to train the resilient back-

propagation neural network. The amount of traffic generated

in a real computer network can be extremely large. More

efficient techniques such as parallel computing may be

applied to speed the training.

In order to enhance the detection rate and efficiency of the

neural network, different configurations of neural networks

such as Back-propagation, Feed-forward, Redial-base neural

networks, etc., need to be implemented and analyzed.

An enhanced version of the KDD Cup 1999 data set, NSL-

KDD [16] could be used as a training dataset. This data set

removes duplicate records in the original KDD Cup 1999.

Even better, a huge contribution to the intrusion detection

community will be the creation of a new training dataset that

includes the most recent attacks.

Another task will be to evaluate the combination of this

approach with other traditional methods used in intrusion

detection systems including statistical and mathematical

models.

One of the most relevant tasks to be performed is the

application of this methodology to a real computer network in

order to make the research more practical.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. Department of

Energy, Office of Science, Office of Workforce Development

for Teachers and Scientists (WDTS) under the Visiting

Faculty Program (VFP).

REFERENCES

 [1] M. Baldonado, C.-C.K. Chang, L. Gravano, and A. Paepcke, “The

Stanford Digital Library Metadata Architecture,” Int. J. Digit. Libr. 1

(1997) 108–121

 [2] J. Shum and H. A. Malki, “Network intrusion detection system using

neural networks,” Fourth International Conference on Natural

Computation, vol. 5, p. 242-246, Oct. 2008

 [3] R. Weaver, “Guide to network defense and countermeasures,” Jan.

2006.

 [4] D. Jiang, Y. Yang, and M. Xia, “Research on intrusion detection based

on an improved SOM neural network,” Fifth International Conference

on Information Assurance and Security, vol. 1, p. 400-403, Aug. 2009.

 [5] I. Ahmad, A.B. Abdullah and A.S. Alghamdi, “Application of artificial

neural network in detection of DOS attacks,” 2nd International

Conference on Security of Information and Networks, 2009.

 [6] G. Poojitha, K. Naveen kumar and P. JayaramiReddy, “Intrusion

detection using artificial neural network,” International Conference on

Computing Communication and Networking Technologies, p. 1–7, Jul.

2010.

 [7] N. Bashah, I. B. Shanmugam, and A.M. Ahmed, “Hybrid intelligent

intrusion detection system,” World Academy of Science, Engineering

and Technology, 2005.

 [8] R. Beghdad, “Critical study of neural networks in detecting intrusions,”

Computers and Security, p. 168-175, Jun. 2008.

 [9] I. Mukhopadhyay, M, Chakraborty, S. Chakrabarti, and T. Chatterjee,

“Back propagation neural network approach to intrusion detection

system,” International Conference on Recent Trends in Information

Systems, p. 303-308, Dec. 2011.

[10] X. Yao, “A network intrusion detection approach combined with genetic

algorithm and back propagation neural network,” International

Conference on E-Heath Networking, Digital Ecosystems and

Technologies, p. 402–405, Apr. 2010.

[11] X. Han, “An improved intrusion detection system based on neural

network,” International Conference on Intelligent Computing and

Intelligent Systems, p. 887–890, Nov. 2009.

[12] http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[13] J. Heaton, “Programming neural networks with Encog 3,” Oct. 2011.

[14] J. Heaton, “Introduction to neural networks for C#,” 2008.

[15] A. D. Amastasiadis, G. D. Magoulas, and M. N. Vrahatis,”New globally

convergent training scheme based on the resilient propagation

algorithm," Neurocomputing, vol. 64, p. 253–270, 2005.

[16] M. Tavallaee, E. Bagheri, W. Lu, A. A. Ghorbani , "A detailed analysis

of the KDD CUP 99 data set," Computational Intelligence for Security

and Defense Applications, 2009. CISDA 2009. IEEE Symposium on , p.

1,6, 8-10, July 2009

[17] https://www.securelist.com/en/analysis/204792255/Kaspersky_Security

_Bulletin_2012_The_overall_statistics_for_2012#6

10Polibits (51) 2015 http://dx.doi.org/10.17562/PB-51-1

Mario A. Garcia and Tung Trinh
IS

S
N

 2395-8618

	I. Introduction
	II. State of the Art
	III. Neural Network – Intrusion Detection System Design
	IV. Neural Network Intrusion Detection System Testing
	V. Conclusion
	VI. Future Work
	Acknowledgments
	References

