
 

Abstract—In a large network, it is extremely difficult for an 

administrator or security personnel to detect which computers 

are being attacked and from where intrusions come. Intrusion 

detection systems using neural networks have been deemed a 

promising solution to detect such attacks. The reason is that 

neural networks have some advantages such as learning from 

training and being able to categorize data. Many studies have 

been done on applying neural networks in intrusion detection 

systems. This work presents a study of applying resilient 

propagation neural networks to detect simulated attacks. The 

approach includes two main components: the Data Pre-

processing module and the Neural Network. The Data Pre-

processing module performs normalizing data function while the 

Neural Network processes and categorizes each connection to 

find out attacks. The results produced by this approach are 

compared with present approaches.   

Index Terms—Computer security, artificial neural network, 

resilient propagation. 

I.   INTRODUCTION 

he number of web attacks in the United States was 

413,622,456, which shows the importance of detecting 

and preventing intrusions [1]. Moreover, according to Shum 

and Malki [2], from July 2004 to August 2004, the number of 

network attacks increased 55%. Those statistics alarm 

network security communities to develop more secured 

solutions that could protect the tenets of information security: 

confidentiality, integrity, and availability [3]. There are many 

proposed methods to develop an intrusion detection system; 

however, the neural network is considered as an alternative 

solution to detect zero day attacks. An advantage of neural 

networks for intrusion detection is that they can “acquire 

knowledge through learning and store it in inter-neuron 

connections known as synaptic weights” [4]. In other words, 

neural networks can detect attacks after they were trained with 

a subset of network traffic representing the signatures of the 

attacks to be detected. This method is called “Supervised 

Learning” because the neural network needs to be trained. 
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(Unsupervised Neural Network can detect attacks without 

training.) There are several training algorithms to train neural 

networks such as back propagation, the Manhattan update 

rule, Quick propagation, or Resilient propagation.  

This research describes a solution of applying resilient 

propagation artificial neural networks to detect simulated 

attacks in computer networks. The resilient propagation is a 

supervised training algorithm. The term “supervised” 

indicates that the neural networks are trained with expected 

output. The resilient propagation algorithm is considered an 

efficient training algorithm because it does not require any 

parameter setting before being used [14]. In other words, 

learning rates or update constants do not need to be computed. 

The approach is tested on eight neural network configurations 

and the results are compared with other approaches found in 

the literature. 

A.  Neural Networks and Intrusion Detection 

An intrusion is defined as “an attempt to gain unauthorized 

accesses to network resources” [5]. External people or internal 

users of networks can be responsible for an intrusion. There 

are many types of intrusions that are being used by hackers 

such as viruses, Trojan, attempt break in, successful break in, 

and Denial-of-Service [6]. An intrusion detection system is 

software and hardware components to perform three network 

defense functions: prevention, detection, and response. There 

are two main criteria to classify intrusion detection systems: 

the trigger and the source of data used by intrusion detection 

systems [7]. Based on the trigger, intrusion detection systems 

can be divided into two types: misuse detection and anomaly 

detection. Misuse detection is a method of using attack 

databases to identify attacks. Every activity is compared with 

known attacks to figure out if that activity is an attack or not. 

In contrast, anomaly detection finds intrusions by keeping 

track of characteristics of profiles of authorized users or 

groups in the network and alerting on discrepancies. Intrusion 

detection systems use alarms to label those profiles.  

A neural network is “an information processing system that 

is inspired by the way biological nervous systems, such as the 

brain, process information” [8]. In other words, a neural 

network consists of a number of elements which work 

together to solve a given problem. In additional, a neural 
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network also can be trained to gain knowledge before being 

used. A neural network contains two main components: the 

input layer and the output layer. Depending on the complexity 

of the problem, a neural network can have several hidden 

layers between the input layer and the output layer. The 

number of neurons in the input layer should match the size of 

the input. Normally, the neuron in the output layer is one. The 

hidden layer plays a role of a data processing station. These 

layers handle data from the input layer and transfer processed 

data to the output layer. Neurons in two adjacent layers are 

connected by the weights. These weights are used to compute 

the output and to minimize the error produced by the neural 

networks. 

There are two algorithms used to define the structure of a 

neural network: the topology algorithm and the training algo-

rithm. The topology algorithm refers to the way neurons are 

connected and how data is transferred between neurons, while 

the training algorithm denotes the method to adjust weights 

between neurons to produce accurate output and minimal 

error. The function to calculate the output is the activation 

function attached in hidden layers and the output layer. 

Equation 2.1 shows how to compute the output from a node j. 

𝑜𝑢𝑡𝑝𝑢𝑡𝑗 = 𝑓(𝑥𝑖) =  𝑓 (∑𝑜𝑖𝑤𝑖𝑗

𝑛

𝑖=1

) (2.1) 

where output j is the output of node j, xj is the data of node j, 

oi is the output of node i connected to j with the corresponding 

weight wij, and f() is the activation function. There are three 

main activation functions used in neural networks: linear, 

sigmoid, and hyperbolic tangent. Each activation function 

scales output in a specific range. Input used in neural 

networks should be normalized into numbers in that range. 

II.   STATE OF THE ART 

In last few years, networking researchers have developed 

intrusion detection systems using various neural network 

types. Shum and Malki [2] described a feedforward neural 

network using the back propagation algorithm implemented 

with three layers: an input layer, a hidden layer, and an output 

layer. Similarly, Poojitha, Naveen kumar, and JayaramiReddy 

[6] introduced an intrusion detection system using an artificial 

neural network using the back propagation algorithm. This 

proposed approach uses two phases, training and testing, to 

detect intrusion activities. First, the intrusion detection system 

is trained to “capture the underlying relationship between the 

chosen inputs and outputs” [6].  

After that, the system is tested with an available data set. 

Mukhopadhyay, Chakraborty, Chakrabarti, and Chatterjee [9] 

presented a study of applying the back propagation algorithm 

in intrusion detection systems. This approach detects 

intrusions in four steps: collect data, convert data into 

MATLAB format, convert data into double data type. This 

data is used as input to the neural network. Yao [10] 

expressed a combination of the back propagation neural 

network and the genetic algorithm. This intrusion detection 

system has eight modules including: a network packet capture 

device, the preprocessing module (a), the normal data 

detection module, the misuse detection module, a statistical 

module, the preprocessing module (b), the abnormal data 

detection module, and the alert response module. This 

approach is proposed to “overcome the blindness of 

optimization” and “avoid occurring local convergence”. Jiang, 

Yang, and Xia [4] introduced an intrusion detection system 

based on the improvement of the Self-Organizing Maps 

algorithm. This approach can “increase detection rate and 

improve the stability of intrusion detection” by modifying the 

strategy of “winner-take-all” and using interaction weight 

which is the effect between each neuron in the output 

layer [4].  

Han [11] proposed an improved model of the Adaptive 

Resonance Theory 2-A neural network which can “handle 

data directly”. This implementation consists of three layers: 

F0, F1, and F2. The F0 layer takes input data and transfer to 

the layer F1 which “performs a Euclidean normalization” to 

filter only acceptable data to send to the F3 layer. The F3 

layer then computes the activation value and labels the 

winning node as “normal” or “one of the 22 attack types” 

based on the classification of the data [11]. Bashah, 

Shanmugam, and Ahmed [7] presented a host-based intrusion 

detection system using both anomaly detection and misuse 

detection trigger with the SOM algorithm. Ahmad, Abdullah, 

and Alghamdi [5] described another proposed intrusion 

detection system. This system uses resilient back propagation 

algorithm to compute weights between neural neurons. 

A.  The Knowledge Data Discover KDD Cup 1999 Data Set 

Intrusion detection systems have been grabbing attention of 

computer science researchers in recent years. There are many 

approaches have been proposed and presented to network 

security communities. Instead of using real data, most of 

proposed approaches use either the DARPA 1998 data set or 

the KDD Cup 1999 data set or both as the input. The KDD 

Cup 1999 data set provide a completed source for 

implementing and testing intrusion detection systems. This 

database contains 22 different attacks and normal connections 

[12]. The data set contains around five million TCP/IP 

connections which are labeled as normal or attacks 

connections. Each connection record contains 41 features in a 

TCP/IP packet and the “Label” feature denoting the category 

into that the connection falls. Table I shows 22 intrusion 

categories included in the KDD Cup 1999 data set. Besides, 

the “normal” value is assigned to normal connections. Each 

attack is classified in one of four groups: DoS, U2R, R2L, and 

Probe. According to [12], these groups are described as 

follows: DoS: denial-of-service; U2R: unauthorized access to 

local root privileges; R2L: unauthorized access from remote 

machines; Probe: surveillance or other probing. 
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TABLE I.  

ATTACKS IN THE KDD CUP 1999 DATA SET 

Group Attack Names 

DoS Back, Land, Neptune, Pod,  Smurf, Teardrop 

U2R Buffer_overflow, loadmodule, 

R2L ftp_write, guess_passwd, imap,  multihop, 

phf, spy, warezclient warezmaster,  

Probe ipsweep, nmap, portsweep, satan,   

B. The Encog Framework 

In 2008, a neural network and machine learning framework 

named Encog was published and developed for C/C++, Java 

and .NET programming languages by Heaton Research, 

Inc. [13]. This framework provides the library for creating 

neural networks and normalizing data. Developers can 

implement various types of neural network such as 

feedforward neural networks, adaptive resonance theory 1 

neural networks, and self-organizing map neural networks. 

Moreover, Encog also contains several training techniques 

like backpropagation, genetic algorithm, Manhattan update 

rule propagation, and resilient propagation. In addition, 

multiple activation functions are included in Encog such as 

Bipolar function, linear function, sigmoid function, and 

hyperbolic tangent function. In this research, the Encog is 

used to build the neural network in .NET framework. 

III.   NEURAL NETWORK – INTRUSION DETECTION 

SYSTEM DESIGN 

According to Heaton [14], neurons in a feedforward neural 

network are connected forward. In essence, data is transferred 

from the input layer to the hidden layer 1 and so on, but there 

are no backward connections. The weight connecting two 

neurons in two adjacent layers is calculated randomly in the 

initialization of the neural network. Then this weight is 

adjusted during the training process. The computation of the 

output in a Feedforward neural network is described as 

follows. First, input from the input layer is transferred to each 

neuron of the hidden layer 1. Then by using Equation 2.1, 

output of neurons in the hidden layer 1 is transferred to 

neurons in the hidden layer 2. Similarly, each neuron in this 

layer generates and then distributes its output to the output 

layer. Finally, the neuron in the output layer computes the 

final output.  

The resilient propagation is a supervised training algorithm. 

The term “supervised” indicates that the neural networks are 

trained with expected output. The resilient propagation 

algorithm is considered the most efficient training algorithm 

because it does not require any parameter setting before being 

used [14]. In other words, learning rates or update constants 

do not need to be computed. As it was previously discussed, 

the training algorithm is used to adjust weights to produce 

accurate output and minimal error rates. The change in weight 

between two neurons is calculated using Equation 3.1: 

∆𝑤𝑖𝑗
𝑘 =

{
 
 

 
 −∆𝑖𝑗

𝑘  𝑖𝑓 
𝜕𝐸(𝑤𝑘) 

𝜕𝑤𝑖𝑗
> 0

+∆𝑖𝑗
𝑘  𝑖𝑓 

𝜕𝐸(𝑤𝑘) 

𝜕𝑤𝑖𝑗
< 0

0  otherwise

 (3.1) 

where E(wk)/wij refers to the partial derivative of the error 

with respect to the weight w, wij is the weight of neurons i and 

j, ∆𝑖𝑗
𝑘  is the update value, and k expresses the index of 

iteration [16]. The update value ∆𝑖𝑗
𝑘  is updated using Equation 

3.2: 

∆𝑖𝑗
𝑘= 

{
 
 

 
 η+ ∆𝑖𝑗

𝑘−1if 
𝜕𝐸(𝑤𝑘−1)

𝜕𝑤𝑖𝑗
 
𝜕𝐸(𝑤𝑘)

𝜕𝑤𝑖𝑗
> 0

η− ∆𝑖𝑗
𝑘−1if 

𝜕𝐸(𝑤𝑘−1)

𝜕𝑤𝑖𝑗
 
𝜕𝐸(𝑤𝑘)

𝜕𝑤𝑖𝑗
< 0

∆𝑖𝑗
𝑘−1 otherwise,

 (3.2) 

where 0 < η− < 1 < η+, η+is the increase factor and η−is the 

decrease factor. In default, η+ is equal to 1.2 while η− is equal 

to 0.5 [14]. If this result is greater than 0, it means the sign has 

not changed, so the update value  is increased by multiplying 

the previous update value with the increase factor. 

Nevertheless, if the result is smaller than 0, it means the sign 

has changed and the previous  is too large. Hence, the update 

value is decreased by multiplying the previous update value 

with the decrease factor. In order to evaluate how well the 

neural network is trained, the mean square error method is 

applied to calculate the error between actual output and 

expected output. Equation 3.3 describes the mean square 

error:  

𝑀𝑆𝐸 =  
1

𝑛
∑(𝑎𝑐𝑡𝑢𝑎𝑙𝑡   −  𝑖𝑑𝑒𝑎𝑙𝑡  )

2
𝑛

𝑡=1

 (3.3) 

where MSE is the mean square error value, n is the size of 

actual output, actual t is the tth actual output and the ideal t is 

the corresponding ideal output. 

The activation function used in the neural network is the 

hyperbolic tangent function, which is shown in Equation 3.4.  

𝑓(𝑥) =  
𝑒2𝑥 − 1

𝑒2𝑥 + 1
 (3.4) 

A. The Data Pre-processing Module 

As it was mentioned, neural networks are trained using the 

activation function. Depending on the activation function used 

in the neural network, data is normalized in different ranges 

which can be (0, 1) or (–1, 1). Because the activation function 

used in the neural network in this research produces output 

between -1 and 1, training data and testing data are 

normalized to values in the range from –1 to 1. In the KDD 

Cup 1999 data set, there are four features in an individual 

TCP connection in text format: protocol_type, service, flag, 

and label. Because each of these features has various groups 

of values, each group is converted into a number between –1 
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and 1. Other features are in numeral format, so they are 

normalized by Equation 3.5: 

𝑓(𝑥) =  
(𝑥 − 𝑑𝐿)(𝑛𝐻 − 𝑛𝐿)

𝑑𝐻 − 𝑑𝐿
+  𝑛𝐿 (3.5) 

where x: value needed to be normalized; dL: the lowest value 

of the data; dH: the highest value of the data; nH: the highest 

value of the normalization range; nL: the lowest value of the 

normalization range. 

IV.   NEURAL NETWORK INTRUSION DETECTION 

SYSTEM TESTING 

Before describing the evaluation plan used in this thesis, a 

brief review of evaluations of previous and related work is 

provided. The KDD Cup 1999 data set is used for creating 

training and testing data sets in every approach. In [2], the 

training set contains 196 records while three testing sets are 

the normal traffic set, the known attack set, and the unknown 

attack set which consist of 50, 25, and 25 records respectively. 

The records in normal traffic and known attack testing set are 

extracted from the training set while the unknown attack set 

contains different data. The results of the evaluation are: 

100% of normal traffic and know attacks are detected only 

76% of unknown attacks are classified. The results seem very 

accurate, but the detection rate of new attack is quite low, 

only 76%. Moreover, the detection rate could increase if the 

size of testing data increments. 

In [4], the approach uses the KDD Cup 1999 data set for 

training and testing data sets. Each category of attacks is 

trained and tested individually [4]. Detection rates are only 

good in three types, normal, dos, and probe, while the other 

two groups have very low accuracy. Furthermore, most of the 

testing sets have smaller sizes than their corresponding 

training sets. In general, the proposed solution does not 

perform well in detecting all types of attacks. The results are 

quite better than the results computed in [4]: 99.76% of 

normal, 100% of DoS and Probe, 67.77% of U2R and 36.84% 

of R2L. Nevertheless, the classifier accuracies of U2R and 

R2L are not acceptable.  

Another similar evaluation method is described in [11]. The 

system is trained 10 times with the same 10% subset of the 

entire KDD Cup 1999 data set and then is tested with the 

entire data set. In other words, the number of training record 

is equal to the number of testing records. The lowest detection 

rate is 90.385% while the highest is 99.946%. The results are 

accurate, but in order to get that achievement, the neural 

network is trained with the same amount of data of the testing 

data. Hence, they do not fully express the capability of neural 

networks that is detecting new objects based on training 

objects. In [5], the work focuses on detection of DoS attacks.  

The proposed system produces 96.16% detection rate in 

case of attack detection with the highest ratio is 100% and the 

lowest scale is 79%. However, the testing data set is 

extremely small, 11 back attacks and 5 normal packets while 

the numbers of records of other attacks are not mentioned. 

Meanwhile, the training data set contains full feature packet of 

DoS attacks of the KDD Cup 1999 data set [5]. Hence, it is 

hard to estimate the performance of this system. The method 

proposed in [9] uses a different method to evaluate neural 

networks: 2 testing levels. At level 1, the system is trained and 

then tested with the same data set. Consequently, the success 

rate is very high: 95.6%. However, at level 2, when the 

system is tested with the new data set, the success rate reduces 

to 73.9% [9]. Therefore, this proposed method is considered 

not accurate.  

A. Evaluation Plan 

As discussed in the previous section, some prior studies do 

not produce accurate results. In some cases, the results are 

lower than 70% which is unacceptable. Only the approach 

presented in [11] can generate over a 90% detection rate. 

However, this method uses the same amount of data for 

training and testing the neural network which may not be 

practical. Therefore, this study focuses on producing accurate 

testing results using a small amount of training data. In order 

to evaluate this approach, several neural networks are tested 

with the same training and testing data for comparing the 

efficiency of different structures of neural networks. All 

neural networks have the same input layer and output layer, 

resilient propagation training algorithm, and hyperbolic 

tangent activation function. The only different configuration is 

the number of neurons in hidden layers. The first number in 

the Structure column refers to the number of neurons of the 

hidden layer 1 while the second number is the number of 

neurons of the hidden layer 2. For example, the neural 

network NN1 has 9 neurons in the hidden layer 1 and 10 

neurons in hidden layer 2. Although there are more choices, 

due to the limitation of time, only 8 neural networks are 

trained and tested.  

The training data set contains 73,249 records extracted 

from the entire KDD Cup 1999 data set. The training set is 

then normalized using the Data Pre-processing module. There 

are 37,860 records of normal traffic included in the training 

data. At an individual iteration of training process, the input of 

the neural network is the set of 41 TCP/IP features of a 

particular record while the ideal output is the “Label” feature 

of that record as well. Each element of the input is fed into 

each neuron of the input layer respectively. Then the training 

process continues until the end of the training set is reached.  

This is to ensure that the neural networks have knowledge 

of all attacks in the training data. If the neural networks are 

trained using an error rate, the training process stops 

immediately after that error rate is achieved. Hence, the neural 

networks may not be trained with attacks in the rest of the 

training data set. After being trained, each neural network is 

tested with several testing data sets. Unlike previous works, in 

this study, the overall detection rates are considered instead of 

individual attacks’ detection rates. First, the neural networks 
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are tested with the same training set to verify they can detect 

records used to train them. Then, they are tested against a 

normal data set, which consists of 83,538 records.  

This is to verify that the neural networks can detect normal 

traffic correctly to prevent false positives. After that, each 

neural network is tested with the 10-percent subset of the 

KDD Cup 1999 data set. This subset contains 494,021 

records. The input and the ideal output in each test case are 

computed similarly as presented in the training process. The 

detection is considered correct if the absolute value of the 

actual output and the expected output is less than 0.04. 

Otherwise, it is counted as an incorrect detection. Similarly, 

the output is compared with each individual connection, 

including both attack values and normal values, in succession. 

B. Results 

In this study, the training data set contains more than 

70,000 records and 23 different types of output. Hence, the 

smaller the error is, the better trained neural networks are. The 

best training error rates among all neural networks was 

0.00005 and the worst was 0.00029. The average time it took 

to train each neural network was 12 hours. The obtained error 

rates denote that the actual output is very close to the ideal 

output. 

After being trained, the neural networks were tested against 

the training data set itself. The best result was 99.89% 

generated by the Neural Network 8, while the worst was 

99.4% computed by the Neural Network 7. After being 

trained and tested with the training data set, each neural 

network was tested using the normal traffic data set extracted 

from the KDD Cup 1999 data set. Figure 1 shows the results 

of this test. 

The worst result is 95% produced by the Neural Network 2 

while the Neural Network 8 once again produces the best 

result. In essence, the Neural Network 8 can detect up to 

99.99912% normal traffic. Finally, the neural networks are 

tested with the 10-percent subset of the KDD Cup 1999 data 

set. This subset consists of 494,021 records, which is equal to 

6.7 times of the training data set. There are 8 types of 

intrusions in the 10-percent subset have similar numbers of 

records in the training data set. Meanwhile, the rest has the 

big differences with the training data set.  

As an illustration, the neptune attack type has only 20,482 

records in the training data set, but it has 10,7201 records in 

the 10-percent subset. Figure 2 shows the results after testing 

eight neural networks with the 10-percent subset. The 

differences between the testing neural networks are really 

small. The best result is 0.06% and the worst one is 0.08%. 

Hence, the average result is about 93%. This result is 

acceptable because the training data set is much smaller than 

the testing data set. Moreover, the result also shows what is 

happening in real life where the network traffic is much larger 

 
Fig. 1. Training detection rates 

 

 
Fig. 2. Detection rates in 10-percent subset test 
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than any data sets. After several tests, the Neural Network 8, 

which contains 14 neurons in each hidden layer shows the 

outstanding performance among 8 neural networks. Testing 

results generated from this neural network are used to 

compare with other studies. 

V.   CONCLUSION 

This study already proves a reliable and efficient solution 

for detecting simulated attacks in computer networks. The 

system includes two components: the Data Pre-Processing 

module and the Neural Network. The Data Pre-processing 

module plays a role of processing data in the KDD Cup 1999 

data set before data is used in the Neural Network. 

Meanwhile, the Neural Network is to detect simulated attacks. 

There are total eight different structures used to evaluate the 

Neural Network. These structures are the combinations of 

different numbers of neurons in two hidden layers of the 

Neural Network. These eight neural networks are built using 

the feedforward algorithm and trained using the resilient 

propagation algorithm. Each neural network is trained with a 

73,249-records training data set. Then it is tested against three 

different testing data sets: the training data set, the normal 

traffic data set, and the 10-percent subset of the KDD Cup 

1999 data set. The detection rates are 99.89%, 99.9%, and 

93% respectively. The proposed approach produces highly 

accurate results compared with other approaches. However, 

while most previous studies use large training data and small 

testing data, the ratio of training data and testing data in this 

study is 0.15.  

VI.   FUTURE WORK 

Training a neural network is a time consuming process. In 

this research it took twelve hours to train the resilient back-

propagation neural network. The amount of traffic generated 

in a real computer network can be extremely large. More 

efficient techniques such as parallel computing may be 

applied to speed the training.  

In order to enhance the detection rate and efficiency of the 

neural network, different configurations of neural networks 

such as Back-propagation, Feed-forward, Redial-base neural 

networks, etc., need to be implemented and analyzed.  

An enhanced version of the KDD Cup 1999 data set, NSL-

KDD [16] could be used as a training dataset. This data set 

removes duplicate records in the original KDD Cup 1999. 

Even better, a huge contribution to the intrusion detection 

community will be the creation of a new training dataset that 

includes the most recent attacks.   

Another task will be to evaluate the combination of this 

approach with other traditional methods used in intrusion 

detection systems including statistical and mathematical 

models.  

One of the most relevant tasks to be performed is the 

application of this methodology to a real computer network in 

order to make the research more practical. 
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