

Abstract—Tests are used in a variety of contexts in the activity
of everyday and everywhere learning. They are a specific method
in the process of assessment (evaluation), which is an important
part of the educational activity. Setting an optimized sequence of
tests (SOT) originating from a group of tests which have the
same subject, with certain restrictions corresponding to a certain
wish of the evaluator can be a slowly time-consuming task,
because the restriction can be various and the number of tests
can be high. In this matter, this paper presents a method of
generating optimized sequences of tests within a battery of tests
using a genetic algorithm. We associate a number of
representative keywords with a test. The user expresses the
restriction by setting up a number of keywords which
approximate best the subject wanted to be tested. The genetic
algorithm helps in finding the optimized solutions and uses a less
amount of hardware resources.

Index Terms—Test, genetic algorithm, keyword, sequence,
generation.

I. INTRODUCTION
HE process of learning is very complex and has three
major components: teaching, learning and evaluation.

This paper focuses on the third component and, in particular,
on tests and their usage based on a customization given by the
user, taking into account keywords, which are part of natural
lexicon. We can specify that the solution proposed in the
paper is immediate and needful.

Firstly, the emergence and fast development of devices
creates a learning current which have some particularities (fast
learning, huge amounts of data obtained relatively fast,
knowledge based on competences, less than on accumulation
of information etc.). This solution adapts on this intrusion of
technology in learning.

Moreover, the time and energy consumed for the manual
trial of the tests is obvious. Finding a solution which

Manuscript received on February 24, 2016, accepted for publication on
June 16, 2016, published on October 30, 2016.

Doru Popescu Anastasiu is with the University of Pitesti, Faculty of
Mathematics and Computer Science, Romania (e-mail:
dopopan@gmail.com).

Nicolae Bold is with the University of Agronomic Sciences and Veterinary
Medicine Bucharest, Faculty of Management, Economic Engineering in
Agriculture and Rural Development, Slatina Branch, Romania (e-mail:
bold_nicolae@yahoo.com).

 Daniel Nijloveanu is with the University of Agronomic Sciences and
Veterinary Medicine Bucharest, Faculty of Management, Economic
Engineering in Agriculture and Rural Development, Slatina Branch, Romania
(e-mail: nijloveanu_daniel@yahoo.com).

decreases this time is a need in a climate where every minute
counts. For example, for a usual exam, a teacher creates tests
with 10 questions that form a battery of tests. These tests have
various subjects. In the process of creation of tests, the teacher
applies “labels” to each test. For a manual search of tests, we
assume that the verification for one test consumes an average
of 1,5 minutes. For a battery of 100 tests, the verification
consumes a total of 150 minutes. Using this application, the
generation and the identification of tests within a well-
organized battery consumes maximum 10 minutes.
Furthermore, the teacher must make an additional search for
different labels, while the generation is made faster.

From the point of view for the student, the solution
presented in this paper adapts to the adaptive learning style,
presented in detail in section 2. In short, the student can
organize the self-assessment process (e.g., learning for an
exam) on subjects. Furthermore, if a battery of tests contains
tests with various subjects and the student wishes to prepare
only for certain subjects in a limited time, the problem
escalates. For example, in a battery of 1000 tests regarding
programming languages, containing tests about C++, Java,
PHP and JavaScript, the student must verify knowledge about
Java. The solution can be applied for solving this problem.

Regarding types of tests, they can be various (simple
questions tests, multiple-choice tests etc.). But, generally, as
human beings, we learn things every moment. This learning
process, also called self-learning, includes a constant
permanent self-evaluation, even if it is formal, informal or our
teacher is ourselves. We all participated at least at one exam
or test – this can be called a formal evaluation. Our
knowledge is tested by creating things and dealing with
situations in real life and this could be considered a less
formal examination. The perception is different for students
and tutors and, in this matter, a study in the paper [1] shows
these differences in perception.

The evaluation is made through several methods, some
traditional, some novel (a presentation of new methods in
assessment can be found in the book [2] and the perspective
of the students on the new methods can be found in [3]). One
of the traditional ones is the test (even if it is a multiple-choice
test, a question test or problem solve test). Tests can be
categorized in a formal register, when the mark obtained by
the learner is important for a legal purpose, but also in a less
informal register, in case of self-learning and self-evaluation.
The purpose is to generate optimized test sequences which

A Method Based on Genetic Algorithms for
Generating Assessment Tests Used for Learning

Doru Popescu Anastasiu, Nicolae Bold, and Daniel Nijloveanu

T

53 Polibits, vol. 54, 2016, pp. 53–60https://doi.org/10.17562/PB-54-7

IS
S

N
 2395-8618

contain the maximum number of keywords from the keywords
set by the user.

The learners deal with a high number of tests in their
learning process. In some cases, the tests are grouped in
batteries or clusters of tests. These tests are not related at all,
as in the problem studied in paper [4], where an arborescent
structure existed. The particular grouping of tests in clusters
makes difficult the process of finding tests with a certain
subject. Thus, this paper presents a solution of a fast finding
of wanted tests with the desired subject. This is made by
previously assigning keywords to tests, then giving some
keywords as input data and finding the ones whose keywords
match with the given keywords. Thus, the problem is solved
using lexical resources. Moreover, the usage of keywords
encapsulates the concept of summarization. The results are
given in the form of optimized sequences of numbers which
codify the tests.

Regarding the problem of summarization and lexical
resources, we can say that keywords represent the words that
are essential for defining a test. They summarize best what a
test contains, turning into lexical resources which are key
elements in the solution of the problem.

The optimality refers to the finding of the maximum
number of tests that can be selected after the required
conditions are respected. Thus, the fitness is a maximum
function and the problem can be classified as an optimization
problem.

Even if the issue does not appear to be immediate and
needful, the trial of tests consumes time and energy. In this
matter, an algorithmically solution of this problem would
bring a plus of efficiency in the process of evaluation, as
shown in the previous paragraphs. The genetic method for
generating the sequences was chosen for its performance in
the usage of fewer hardware resources and for its variability
of output solutions.

Section 2 will contain a short description of testing method
and some measurable data to show its efficiency in the
evaluation process. In Section 3, we will present some notions
regarding genetic algorithms and their role in solving
problems. The algorithm description takes place in Section 4
and Section 5 will describe some results regarding the
algorithm efficiency and the productivity of the algorithm in
solving the problem. Section 6 will draw the lines of this
paper and will present the future work which will be made in
this matter.

II. ON THE IMPACT OF TESTS, EVALUATION AND
INFORMATION AND COMMUNICATION TECHNOLOGIES (ICT)

ON EDUCATION

The main idea of this paper related to evaluation process, in
particular, and education, in general, can be viewed from
various angles and has more perspectives.

One of them is the personalization of the subjects desired to
be learned, either by a teacher or by a student. Regarding the

latter category, a specific type of learning style has been
implemented in several universities or faculties worldwide,
where the student chooses the subjects he wishes to use in the
future and the education is made using computers as teaching
devices. Roughly, this process can be called adaptive learning
style. In a similar way, choosing a sequence which suits best
to specific needs foe evaluation will maximize the
effectiveness in learning. In a study made in the paper [5] a
comparison between an adaptive learning style and a non-
adaptive one is realized. This study, based on measuring some
key characteristics that influence learning, revealed that a high
percent of students (90.63%) think that learning styles are
important for learning. Another conclusion of the study is
focusing on the fact that students would prefer to have
recommended paths for learning, but this should be chosen by
the student. The fact of self-choices has several aspects and
part of them have not positive effects over the learning status
of the students. Thus, some major risks in this case are:

– faulty choices of what is needed for learning due to the
immaturity of children or depending on the pupil/student
personality;

– lack of human communication, which is partly substituted
with modern communication technologies, and its further
implications.

Another perspective of using Information and
Communication Technologies (ICT) in learning and
evaluation is the perception of the student on the teaching
style, because of the modern characteristic of using
technology [6]. Because they are more familiar with the
technology, students perceive this step to modern techniques
of teaching as receptivity to innovation from the teacher.
From a statistical point of view, in the same study, made on a
total of 226 students, it was shown the attitude of students
towards the school activity has also shown to be improved in
the studied group.

A very interesting perspective is the creation of an open
learning environment [7], which appears in case of using
technology in education. The development of technology and
the equipment, which has more and more influence on the
society, in general (Internet, educational platforms and
software on one hand and gadgets such as tablets, smart
phones, laptops, projectors on the other hand), brings into
attention notions regarding a specific new environment,
defined in this paper as a combination between social
technological and pedagogical factors which influence each
other and which influence educations.

Examples of open-learning environments are the e-learning
platforms. Studies regarding the inclusion of ICT in
education have led to the apparition of e-learning platforms.
The usage of Internet in the process of education is more and
more visible today. An example of a study and of a model for
an e-learning platform, with its threats is detailed in papers [8]
and [9].

54Polibits, vol. 54, 2016, pp. 53–60 https://doi.org/10.17562/PB-54-7

Doru Popescu Anastasiu, Nicolae Bold, Daniel Nijloveanu
IS

S
N

 2395-8618

Regarding the particular process of assessment, in the
context of the combination between the three processes of
education, numerous results of studies and data from literature
show the fact that ICT has proven its benefits to evaluation in
the matter of online and technology-based assessments versus
the traditional methods of student evaluation, as proved in
[10], [11] or [12]. Despite these results, there is not known the
effect on a long-term period, so we should monitor the effects
on a longer period than the time accorded for learning for an
exam, possibly showing their efficiency in more practical
situations.

The perspectives on ICT influence on the educational
process are numerous and have both positive and negative
implications on the personality of the student. As the authors
in the paper [13] show, there are many questions to be
answered in the matter of efficiency of ICT based methods in
teaching, learning and evaluation. Thus, we must find answers
to questions such as “how can the problem of communication
be solved?”, “how can practical abilities (e.g., crafting) can be
developed?”, “how can we measure the efficiency and the
added value of educational methods based explicitly on ICT?“
or “how can we improve the security of assessment
structures?”.

III. GENETIC ALGORITHMS

Problems which appear in practice can be solved using
different methods, algorithms and structures. Their variety is
wide, starting with trees and graphs, continuing with
backtracking and greedy algorithms and finishing with
random or genetic methods of solving problems. Among
them, genetic algorithms are used for problems which solve
the optimization aspects. They are inspired by genetics and
use notions such as chromosomes, genes, mutation and
crossover. Next, we will present shortly some problems that
can be solved using genetic algorithm, as well as some key
characteristics of them.

Firstly, a genetic algorithm uses a lower amount of
hardware resources (the runtime is lower). This is a major
point in using genetic algorithms, because of its methods,
being preferred to other optimization or heuristic algorithms
(such as backtracking) in some cases (for a larger number of
solutions, in case of large amounts of input data etc.)

Another characteristic of a genetic algorithm is that the
problem solved through this method has to be or to be
transformed into an optimization problem [14]. This means
that genetic algorithms found the most optimized solution in
case of minimum and maximum issues.

An eventual drawback could be the fact that genetic
algorithms do not find the most accurate solution, but at least
they generate solutions that can be found in its proximity.
Genetic algorithms are used mostly in cases in which input
data is in large quantities, which is the case of the most
practical problems needed to be solved.

One of the areas in which genetic algorithm is used is
designing constructions. In the paper [15] there is presented a
solution for designing the optimized thermal and lightning
conditions, construction materials etc. within a building, using
genetic algorithms. GA are also used in issues related to
domains such as mathematics, statistics, physics, engineering,
transportation, pollution cases [16], chemistry [17],
agriculture [18], web programming [19], web applications
[20] and even fashion issues [21]. This is a very short list of
the applications of genetic algorithms in specific domains.

Even with the drawbacks of this method (the found
solutions are optimized, but not optimal), we chose genetic
algorithms because they offer a variety of solutions with given
restrictions, which is the case of our problem. The large
number of tests within a battery and the correspondence of
genetic structures with the ones of the studied problem are
other reasons for choosing genetic algorithms, besides the
ones presented in the introduction.

IV. ALGORITHM

As we said before, the algorithm uses genetic notions
inspired by biology and in this way it generates the sequences
we want to obtain. In another paper [1], the case in which the
tests have a tree-designed relationship was studied. Here, we
will show the algorithm when tests are not level-related.
 The tests will be codified by numbers from 1 to n. The
optimized sequence of tests (a chromosome) is an
arrangement with k elements, m being given by the user
(representing the number of tests within the test battery) of the
set {1,2,…,n} and a test (a gene) within an optimized
sequence of tests is represented by a number from the set
{1,2,…,n}. The fitness for a sequence is represented by the
maximum number of keywords within the sequence (the m-
arrangement) which correspond with the keywords set by the
user. The chromosomes will be ordered by the value of the
fitness function. In Figure 1, an example of the structure of a
chromosome with 6 genes which will be output as solution is
presented.

Firstly, an array of arrays is initialized with 0 or 1 value

(false or true). The purpose of this array is to verify if a
keyword which characterizes a test is part of the keywords set

Fig. 1. An example of the general form of an optimized sequence of tests
(chromosome) with 6 tests (genes)

55 Polibits, vol. 54, 2016, pp. 53–60https://doi.org/10.17562/PB-54-7

A Method Based on Genetic Algorithms for Generating Assessment Tests Used for Learning
IS

S
N

 2395-8618

by the user. Then, a number from 1 to n, representing a test, is
randomly generated and verified if one of its keywords is part
of the list of keywords set by the user. After this verification,
when the optimized sequence of tests is generated completely,
the fitness of this sequence is calculated. The optimized
sequences of tests are ordered by the value of the fitness.
During the next step, there are made operations such as
mutation or crossover between chromosomes (sequences).
Then, the resulted sequences are ordered again by the value of
the fitness.

The variables used in the algorithm that we will need is
presented next:

n: the number of tests within the battery;
m: the number of tests needed in the optimized sequence of

tests;
no_generations: the number of generations used to generate

the optimized sequences of tests
no_words: the number of keywords set by the user;
no_cuvT: the number of keywords of each test.

The structures (arrays) that will be needed within the
algorithm are:

TG[no_words]: the array contains the keywords set by the
user;
pop[no_generations][m]: the solution array;
T[n][no_words]: an array of arrays, which has the meaning:

T[i][k]=�
1, if the kthkeyword from the ithtest

is found among TG array
0, otherwise

;

i=1,n����; k=1,no_cuvT�������������

After presenting the input data, we can say that the fitness
has the next form:

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = � 𝑇𝑇�𝑝𝑝𝑝𝑝𝑝𝑝[𝑖𝑖][𝑗𝑗]�[𝑘𝑘];
1≤𝑗𝑗≤𝑚𝑚

1≤𝑘𝑘≤𝑛𝑛𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐

𝑖𝑖 = 1,𝑛𝑛𝑝𝑝_𝑔𝑔𝑔𝑔𝑛𝑛𝑔𝑔𝑔𝑔𝑚𝑚𝑔𝑔𝑔𝑔𝑝𝑝𝑛𝑛𝑔𝑔������������������������

The input data will be formed from n, m, no_generations,
no_words, no_cuvT and the keywords for each test. For
avoiding comparing each time the keywords, the array T is
built, so there are stored only the keywords which match with
the ones from the array TG and the tests containing them. The
output data will contain the first k solutions (optimized
sequences of tests) from the array pop, where k is a value set
by the user, and the number of keywords matching with the
ones from TG for each sequence.

After we presented the input and output data needed for our
algorithm, we shall present the steps of the algorithm.

Step 1. Input data (mentioned before) is read.

Step 2. The array T is initialized with 0 or 1 (false or true)
values, according to the definition presented before.

Step 3. The chromosomes (optimized sequences of tests) are
randomly generated, gene by gene. This will be the initial
population.

Step 4. The fitness function is calculated for each
chromosome. The fitness function is stored in the (m+1)th
element of the solution array (pop).

𝑝𝑝𝑝𝑝𝑝𝑝[𝑚𝑚 + 1] = � 𝑇𝑇�𝑝𝑝𝑝𝑝𝑝𝑝[𝑖𝑖][𝑗𝑗]�[𝑘𝑘];
1≤𝑗𝑗≤𝑚𝑚

1≤𝑘𝑘≤𝑛𝑛𝑟𝑟_𝑐𝑐𝑐𝑐𝑐𝑐

𝑖𝑖 = 1,𝑛𝑛𝑝𝑝_𝑔𝑔𝑔𝑔𝑛𝑛𝑔𝑔𝑔𝑔𝑚𝑚𝑔𝑔𝑔𝑔𝑝𝑝𝑛𝑛𝑔𝑔������������������������

Step 5. Operations (mutation and crossover) are applied on the
generated chromosomes. The fitness function is calculated for
each chromosome in this step too. The fitness function is also
stored in the (m+1)-th element of the solution array. Figure 2
presents an example of mutation within a chromosome.

Figure 3 presents an instance of the crossover operation with
one point between two chromosomes.

Step 6. The chromosomes are ordered by the value of the
fitness. At this step, method of order can be used. Steps 5 and
6 are repeated for no_generations times.

Step 7. The first desired solutions are output.

V. RESULTS AND DISCUSSION

To show the efficiency in solving a practical problem, we
shall take a short example. The battery of test will have as
main subject programming languages. Tests have subjects
represented by keywords such as software, editing, office,
complier, pascal, Java, similarity, syntax, logical, expression,
operation, type, protocol, Internet etc., in subdomains such as
software in general, programming languages, syntax of
languages, memory usage, programming methods, Internet,
web programming or database concepts.

Fig. 3. Crossover with one point between two optimized sequences of tests
(chromosomes)

Fig. 2. Mutation within a sequence (chromosome)

56Polibits, vol. 54, 2016, pp. 53–60 https://doi.org/10.17562/PB-54-7

Doru Popescu Anastasiu, Nicolae Bold, Daniel Nijloveanu
IS

S
N

 2395-8618

For our example, the variables have the next values: n=42,
m=15, no_generation=600, no_words=15. The keywords set
by the user are:

TG=(software, programming, c, Java, method, structure,
variable, backtracking, tree, binary, compiler, instruction,
recursive, console, Internet)

The battery of tests contains 42 tests and the keywords that
characterize each test are presented in Figure 4. The number
in bold characters is the integer assign for the test and the
second number represents the number of keywords
representative for each test.

The results are divided in two components:

– the output optimized sequences of tests;
– the runtime of the algorithm.

The output in our case is presented in Table II. In case of
runtime, we present its dependence on parameters such as the

number of tests (n), the number of generations and the number
of tests in the optimized sequence of tests (m).

The values were obtained with a code written using the
Java programming language, within a Java environment
(NetBeans IDE 8.0.2).

The array T stores for each test the keywords that match the
keywords from TG. In Table I and II the array T for our
example is presented.

The number of keywords from TG which are found in the
42 tests is 22. The first 10 optimized sequences of tests
resulted after the program runs are presented in Table III.

The runtime after running the program is 3.877521196
seconds, which shows that the program is efficient regarding
the usage of resources. For supporting this affirmation, we
present a graph which shows the runtime for different values
of n. The values are resulted for m=15 and for no_generations
(number of generations) equal to 700. Individual values are an
average of 5 values. In the graphs there are made some

Fig. 4. Battery of 42 tests for our example

57 Polibits, vol. 54, 2016, pp. 53–60https://doi.org/10.17562/PB-54-7

A Method Based on Genetic Algorithms for Generating Assessment Tests Used for Learning
IS

S
N

 2395-8618

calculus to show the models of the functions. Figure 5
presents the model of the algorithm runtime for different
values of n.

Figure 6 presents the model of the algorithm runtime for
different values of number of generations.

Figure 7 presents for the model of the algorithm runtime for
different values of m.

It can be seen that the models have quite a major
significance, depending on the coefficient of correlation R2,
especially for models from Figures 6 and 7. All three models
are based on a linear regression.

As we can see, the number of tests within the battery does
not influence very much the runtime of the algorithm. The
number of genes in the chromosome (m) influences in a minor
way the runtime, the biggest increase being shown in case in
which we want more accurate solutions (in this case, the
number of generations increases). Despite this increase, the
difference between the first measured element and the latter is
5.836 seconds (from 500 to 1300 generations). This is not an
extremely significant difference, given the fact that the
number of generations almost triples.

Fig. 7. Runtime depending on the value of n (m=15, no_generations=700)

Fig. 6. Runtime depending on the value of no_generations (n=42, m=15)

Fig. 5. Runtime depending on the value of m (n=42, no_generations=700)

TABLE I
The array T after running the algorithm

No. TG No. TG
1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15

T1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TG1 = software in test 1

 T15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
None of TG elements in test 15

T2 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0
TG1,2,11 = software, programming, compiler in test 2

 T16 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
TG14 = console in test 16

T3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
None of TG elements in test 3

 T17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
None of TG elements in test 17

T4 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0
TG3,11,14 = c, compiler, console in test 4

 T18 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0
TG8,13 = backtracking, recursive in test 18

T5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
TG4 = Java in test 5

 T19 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
TG13 = recursive in test 19

T6 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
TG3,4 = c, Java in test 6

 T20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
None of TG elements in test 20

T7 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
TG7 = variable in test 7

 T21 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
TG6 = structure in test 21

T8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
None of TG elements in test 8

 T22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
None of TG elements in test 22

T9 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
TG12 = instruction in test 9

 T23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
None of TG elements in test 23

T10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
None of TG elements in test 10

 T24 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0
TG9,10 = tree, binary in test 24

T11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
None of TG elements in test 11

 T25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
None of TG elements in test 25

T12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
None of TG elements in test 12

 T26 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
TG13 = recursive in test 26

T13 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
TG7 = variable in test 13

 T27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
None of TG elements in test 27

T14 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
TG14 = console in test 14

 T28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
TG15 = Internet in test 28

58Polibits, vol. 54, 2016, pp. 53–60 https://doi.org/10.17562/PB-54-7

Doru Popescu Anastasiu, Nicolae Bold, Daniel Nijloveanu
IS

S
N

 2395-8618

To summarize, the runtime obtained is far superior to a
backtracking problem. Our problem is somehow similar to
generating arrangements. In comparison, a backtracking
algorithm would consume a large amount of time and
resources or even stop with the current technology at a
relatively low value of n (approximately 20-30 tests within the
battery).

VI. CONCLUSION

This algorithm is useful in evaluation issues, but its
applications could be extended in problems which can be
structured in similar ways (e.g., in the agricultural domain, in
mathematics etc.), because of the usage of combinatorics
notions. Furthermore, the method can be extended for

generating questions within a test (optimized sequences of
questions), an issue presented in next papers. The method is
useful for selecting specific tests conditioned by some
constrains given by the user and the algorithm is designed to
give solutions in a reasonable amount of time, within a
reasonable precise range. A future work would be considered
the implementation of a real-time web-based or offline
application which can show in a graphical way the results of
this algorithm.

REFERENCES
[1] E. MacLellan, “Assessment for Learning: The differing perceptions of

tutors and students,” Assessment & Evaluation in Higher Education,
vol. 26, no. 4, pp. 307-318, 2001.

[2] D. Boud and N. Falchikov, Rethinking Assessment in Higher
Education: Learning for the Longer Term, Routledge Publishing, 2007.

[3] K. Struyven, F. Dochy, and S. Janssens, “Students’ Perceptions about
New Modes of Assessment in Higher Education: A Review,”
Optimising New Modes of Assessment: In Search of Qualities and
Standards, vol. 1 of the series Innovation and Change in Professional
Education, pp. 171-223, 2005.

[4] D. Nijloveanu, N. Bold, and A.-C. Bold, “A hierarchical model of test
generation within a battery of tests,” International Conference on
Virtual Learning, pp. 147-153, 2015.

[5] E. Popescu, “Adaptation Provisioning with respect to Learning Styles
in a Web-Based Educational System: An Experimental Study,” Journal
of Computer Assisted Learning, vol. 26, no. 4, pp. 243-257, 2010.

[6] V. Ştefănescu, C. Ştefănescu, and O. Roşu Stoican, “The influence of
using ICT on the quality of learning”, International Conference on
Virtual Learning, ICVL, pp. 169-172, 2015.

[7] C. Holotescu, “A conceptual model for Open Learning Environments”,
International Conference on Virtual Learning – ICVL, pp. 54- 61, 2015

[8] C. Baron, A. Şerb, N. M. Iacob, and C. L. Defta, “IT Infrastructure
Model Used for Implementing an E-learning Platform Based on
Distributed Databases,” Quality-Access to Success Journal, vol. 15, no.
140, pp. 195-201, 2014.

[9] C. L Defta, A. Şerb, N. M. Iacob, and C. Baron, “Threats analysis for
E-learning platforms,” Knowledge Horizons - Economics, vol. 6, no. 1,
pp. 132–135, 2014.

[10] R. Clariana and P. Wallace, “Paper–based versus computer–based
assessment: key factors associated with the test mode effect,” British
Journal of Educational Technology, vol. 33, no. 5, pp. 593–602, 2002.

[11] M. Graff, “Cognitive Style and Attitudes Towards Using Online
Learning and Assessment Methods,” Electronic Journal of e-Learning,
vol. 1, no. 1, pp. 21-28, 2003.

[12] J. Gaytan and B. C. McEwen, “Effective Online Instructional and
Assessment Strategies,” American Journal of Distance Education,
vol. 21, no. 3, pp. 117-132, 2007.

[13] M. J. Cox and G. Marshall, “Effects of ICT: Do we know what we
should know?,” Education and Information Technologies, vol. 12,
no. 2, pp. 59-70, 2007.

[14] C. Groșan and M. Oltean, “Algoritmi Evolutivi,” Ginfo, vol. 8, pp. 30-
36, 2011.

[15] L. G. Caldas and L. K. Norford, “A design optimization tool based on a
genetic algorithm,” Automation in Construction, ACADIA 1999,
vol. 11, no. 2, pp. 173–184, 2002.

[16] S. Rahmani, S. M. Mousavi, and M. J. Kamali, “Modeling of road-
traffic noise with the use of genetic algorithm,” Applied Soft
Computing, vol. 11, no. 1, pp. 1008–1013, 2011.

[17] S. Darby, T. V. Mortimer-Jones, R. L. Johnston, and C. Roberts,
“Theoretical study of Cu–Au nanoalloy clusters using a genetic
algorithm,” Journal of Chemical Physics, vol. 116, no. 4, 2002.

[18] D. Popescu Anastasiu and D. Radulescu, “Monitoring of irrigation
systems using genetic algorithms,” ICMSAO, pp. 1-4, 2015.

TABLE III
Output optimized sequences of tests for the example

No. Optimized sequence of tests
1. 14 6 30 2 18 5 19 4 26 40 24 29 16 9 7
2. 2 6 30 16 19 26 7 5 29 18 4 24 14 40 9
3. 2 40 19 30 7 14 26 16 18 5 6 9 4 24 29
4. 29 26 30 18 2 14 5 16 40 4 7 6 19 24 9
5. 2 5 40 14 4 16 19 30 9 24 26 6 7 18 29
6. 2 29 26 13 9 14 40 5 16 6 24 18 4 30
7. 18 6 26 5 7 14 19 29 4 2 24 30 16 40 9
8. 2 30 5 14 6 16 9 4 26 18 40 19 24 7 29
9. 2 26 30 13 6 14 24 4 18 7 5 40 9 29 16
10. 30 2 18 7 40 14 24 26 16 6 4 19 29 5 9

TABLE II
The array T after running the algorithm

No. TG
 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15

T29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
TG15 = Internet in test 29

T30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
TG15 = Internet in test 30

T31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
None of TG elements in test 31

T32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
None of TG elements in test 32

T33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
None of TG elements in test 33

T34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
None of TG elements in test 34

T35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
None of TG elements in test 35

T36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
None of TG elements in test 36

T37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
None of TG elements in test 37

T38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
None of TG elements in test 38

T39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
None of TG elements in test 39

T40 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
TG11 = compiler in test 28

T41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
None of TG elements in test 41

T42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
None of TG elements in test 42

59 Polibits, vol. 54, 2016, pp. 53–60https://doi.org/10.17562/PB-54-7

A Method Based on Genetic Algorithms for Generating Assessment Tests Used for Learning
IS

S
N

 2395-8618

[19] D. Popescu Anastasiu and D. Radulescu, “Approximately Similarity
Measurement of Web Sites,” ICONIP, Neural Information
Processing, Proceedings, LNCS, Springer, 9-12, 2015.

[20] D. Popescu Anastasiu and I. A. Popescu, “Model of determination of
coverings with web pages for a website, International Conference on
Virtual Learning, pp. 279-283, 2015.

[21] H.-S. Kim and S.-B. Cho, “Application of interactive genetic algorithm
to fashion design,” Engineering Applications of Artificial Intelligence,
vol. 13, no. 6, pp. 635–644, 2000.

60Polibits, vol. 54, 2016, pp. 53–60 https://doi.org/10.17562/PB-54-7

Doru Popescu Anastasiu, Nicolae Bold, Daniel Nijloveanu
IS

S
N

 2395-8618

